scholarly journals Mobility Analysis of Planar Mobile Robots and The Rough-Terrain Mobile Robot via The Representative Screw

2002 ◽  
Vol 8 (10) ◽  
pp. 881-889
Robotica ◽  
2016 ◽  
Vol 35 (10) ◽  
pp. 2076-2096
Author(s):  
He Xu ◽  
X. Z. Gao ◽  
Yan Xu ◽  
Kaifeng Wang ◽  
Hongpeng Yu ◽  
...  

SUMMARYFor wheeled mobile robots moving in rough terrains or uncertain environments, driving failure will be encountered when trafficability failure occurs. Continuous mobility of mobile robots with special ability for overcoming driving failure on rough terrain has rarely been considered. This study was conducted using a four-wheel-steering and four-wheel-driving mobile robot equipped with a binocular visual system. First, quasi-static force analysis is carried out to understand the effects of different driving-failure modes on the mobile robot while moving on rough terrain. Secondly, to make the best of the rest of the driving force, robot configuration transformation is employed to select the optimal configuration that can overcome the driving failure. Thirdly, sliding mode control based on back-stepping is adopted to enable the robot achieve continuous trajectory tracking with visual feedback. Finally, the efficacy of the presented approach is verified by simulations and experiments.


2018 ◽  
Vol 161 ◽  
pp. 03013 ◽  
Author(s):  
Valery Gradetsky ◽  
Ivan Ermolov ◽  
Maxim Knyazkov ◽  
Boris Lapin ◽  
Eugeny Semenov ◽  
...  

One of the priority functional tasks of both industrial and mobile robotics is to perform operations for moving payloads in space. Typically, researchers pay attention to control the movement of the robot on different soils. It is necessary to underline the specificity of the movements of mobile robots, the main functional purpose of which is the movement of different objects. Unlike other robot applications there is the fact that transported cargo may have different mass-dimensional characteristics. The payload should be comparable to the mass of the mobile robot. This article addresses the issue of passability on rough terrain for a mobile robot performing the transport task and proposed a technical solution in the field of mechanics of propulsion to improve propelling of the traction wheel of the mobile robot with the ground.


2010 ◽  
Vol 166-167 ◽  
pp. 191-196
Author(s):  
Adrian Dumitriu

The paper presents some author’s experiments carried out within the frame of a research project and destined to endow mobile robot modules with small and simple sensors to support navigation. Range sensors, proximity sensors and acceleration sensors in MEMS technology were used and Fuzzy logic has proved to be an adequate tool for sensor data integration. A Fuzzy controller has been developed and tested on a mobile robot moving on rough terrain.


2015 ◽  
Vol 27 (5) ◽  
pp. 587-589
Author(s):  
Shuro Nakajima ◽  

<div class=""abs_img""> <img src=""[disp_template_path]/JRM/abst-image/00270005/16.jpg"" width=""300"" /> Personal mobility vehicles</div> We have developed the RT-Mover series of mobile robots because of the strong demand for mobile robot platforms for use on rough terrain. They look like ordinary four-wheel vehicles but are mobile enough to operate on targeted rough terrain encountered in daily life. The advantage of this series is that individual wheels negotiate obstacles with their own leg motion mechanisms. </span>


2019 ◽  
Vol 139 (9) ◽  
pp. 1041-1050
Author(s):  
Hiroyuki Nakagomi ◽  
Yoshihiro Fuse ◽  
Hidehiko Hosaka ◽  
Hironaga Miyamoto ◽  
Takashi Nakamura ◽  
...  

2010 ◽  
Vol 7 ◽  
pp. 109-117
Author(s):  
O.V. Darintsev ◽  
A.B. Migranov ◽  
B.S. Yudintsev

The article deals with the development of a high-speed sensor system for a mobile robot, used in conjunction with an intelligent method of planning trajectories in conditions of high dynamism of the working space.


2004 ◽  
Author(s):  
Matthew J. Spenko ◽  
Karl D. Iagnemma ◽  
Steven Dubowsky

1992 ◽  
Vol 337 (1281) ◽  
pp. 341-350 ◽  

Localized feature points, particularly corners, can be computed rapidly and reliably in images, and they are stable over image sequences. Corner points provide more constraint than edge points, and this additional constraint can be propagated effectively from corners along edges. Implemented algorithms are described to compute optic flow and to determine scene structure for a mobile robot using stereo or structure from motion. It is argued that a mobile robot may not need to compute depth explicitly in order to navigate effectively.


Energies ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 27 ◽  
Author(s):  
Linfei Hou ◽  
Liang Zhang ◽  
Jongwon Kim

To improve the energy efficiency of a mobile robot, a novel energy modeling method for mobile robots is proposed in this paper. The robot can calculate and predict energy consumption through the energy model, which provides a guide to facilitate energy-efficient strategies. The energy consumption of the mobile robot is first modeled by considering three major factors: the sensor system, control system, and motion system. The relationship between the three systems is elaborated by formulas. Then, the model is utilized and experimentally tested in a four-wheeled Mecanum mobile robot. Furthermore, the power measurement methods are discussed. The energy consumption of the sensor system and control system was at the milliwatt level, and a Monsoon power monitor was used to accurately measure the electrical power of the systems. The experimental results showed that the proposed energy model can be used to predict the energy consumption of the robot movement processes in addition to being able to efficiently support the analysis of the energy consumption characteristics of mobile robots.


Sign in / Sign up

Export Citation Format

Share Document