scholarly journals Application of Machine Learning in Auditing Teaching: A Case Study of Predicting the Audit Report Type of China ST Listed Companies

2020 ◽  
Vol 2 (1) ◽  
pp. 023-040
Author(s):  
Shi-Ming Huang Shi-Ming Huang ◽  
Chang-ping Chen Shi-Ming Huang ◽  
Tzu-ching Wong Chang-ping Chen

<p>Artificial intelligence is an important emerging technology in the accounting industry. Fear and hype associated with artificial intelligence and its impact on accounting and auditing jobs have pervaded the professional fields of accounting and auditing. It is important to develop AI competency in accountants and auditors. This paper presents a teaching case for a professor or lecturer to use for teaching machine learning to accounting students. The case is based on openly available data from the China Stock Market & Accounting Research database and aims to teach students how to predict the future audit report type of a China ST listed company. Through case teaching, students can learn skills related to computer-assisted auditing tools and machine learning (such as ACL) develop the confidence to apply artificial intelligence in their education and future work.</p> <p>&nbsp;</p>

Author(s):  
Jeremy Riel

Conversational agents, also known as chatbots, are automated systems for engaging in two-way dialogue with human users. These systems have existed in one form or another for at least 60 years but have recently demonstrated significant potential with advances in machine learning and artificial intelligence technologies. The use of conversational agents or chatbots for education can potentially reduce costs and supplement teacher instruction in transformative ways for formal learning. This chapter examines the design and status of chatbots and conversational agents for educational purposes. Common design functions and goals of educational chatbots are described, along with current practical applications of chatbots for educational purposes. Finally, this chapter considers issues about pedagogical commitments, ethics, and equity to suggest future work in the field.


2020 ◽  
Vol 20 (4) ◽  
pp. 609-624
Author(s):  
Mohamed Marzouk ◽  
Mohamed Zaher

Purpose This paper aims to apply a methodology that is capable to classify and localize mechanical, electrical and plumbing (MEP) elements to assist facility managers. Furthermore, it assists in decreasing the technical complexity and sophistication of different systems to the facility management (FM) team. Design/methodology/approach This research exploits artificial intelligence (AI) in FM operations through proposing a new system that uses a deep learning pre-trained model for transfer learning. The model can identify new MEP elements through image classification with a deep convolutional neural network using a support vector machine (SVM) technique under supervised learning. Also, an expert system is developed and integrated with an Android application to the proposed system to identify the required maintenance for the identified elements. FM team can reach the identified assets with bluetooth tracker devices to perform the required maintenance. Findings The proposed system aids facility managers in their tasks and decreases the maintenance costs of facilities by maintaining, upgrading, operating assets cost-effectively using the proposed system. Research limitations/implications The paper considers three fire protection systems for proactive maintenance, where other structural or architectural systems can also significantly affect the level of service and cost expensive repairs and maintenance. Also, the proposed system relies on different platforms that required to be consolidated for facility technicians and managers end-users. Therefore, the authors will consider these limitations and expand the study as a case study in future work. Originality/value This paper assists in a proactive manner to decrease the lack of knowledge of the required maintenance to MEP elements that leads to a lower life cycle cost. These MEP elements have a big share in the operation and maintenance costs of building facilities.


First Monday ◽  
2019 ◽  
Author(s):  
Niel Chah

Interest in deep learning, machine learning, and artificial intelligence from industry and the general public has reached a fever pitch recently. However, these terms are frequently misused, confused, and conflated. This paper serves as a non-technical guide for those interested in a high-level understanding of these increasingly influential notions by exploring briefly the historical context of deep learning, its public presence, and growing concerns over the limitations of these techniques. As a first step, artificial intelligence and machine learning are defined. Next, an overview of the historical background of deep learning reveals its wide scope and deep roots. A case study of a major deep learning implementation is presented in order to analyze public perceptions shaped by companies focused on technology. Finally, a review of deep learning limitations illustrates systemic vulnerabilities and a growing sense of concern over these systems.


2010 ◽  
Vol 19 (06) ◽  
pp. 733-753 ◽  
Author(s):  
MANOLIS MAVRIKIS

Human-Computer Interaction modelling can benefit from machine learning. This paper presents a case study of the use of machine learning for the development of two interrelated Bayesian Networks for the purposes of modelling student interactions within Intelligent Learning Environments. The models predict (a) whether a given student's interaction is effective in terms of learning and (b) whether a student can answer correctly questions in an intelligent learning environment without requesting help. After discussing the requirements for these models, the paper presents the particular techniques used to pre-process and learn from the data. The case study discusses the models learned based on data collected from student interactions on their own time and location. The paper concludes by discussing the application of the models and directions for future work.


2021 ◽  
Author(s):  
Bongs Lainjo

Abstract Background: Information technology has continued to shape contemporary thematic trends. Advances in communication have impacted almost all themes ranging from education, engineering, healthcare, and many other aspects of our daily lives. Method: This paper attempts to review the different dynamics of the thematic IoT platforms. A select number of themes are extensively analyzed with emphasis on data mining (DM), personalized healthcare (PHC), and thematic trends of a select number of subjectively identified IoT-related publications over three years. In this paper, the number of IoT-related-publications is used as a proxy representing the number of apps. DM remains the trailblazer, serving as a theme with crosscutting qualities that drive artificial intelligence (AI), machine learning (ML), and data transformation. A case study in PHC illustrates the importance, complexity, productivity optimization, and nuances contributing to a successful IoT platform. Among the initial 99 IoT themes, 18 are extensively analyzed using the number of IoT publications to demonstrate a combination of different thematic dynamics, including subtleties that influence escalating IoT publication themes. Results: Based on findings amongst the 99 themes, the annual median IoT-related publications for all the themes over the four years were increasingly 5510, 8930, 11700, and 14800 for 2016, 2017, 2018, and 2019 respectively; indicating an upbeat prognosis of IoT dynamics. Conclusion: The vulnerabilities that come with the successful implementation of IoT systems are highlighted including the successes currently achieved by institutions promoting the benefits of IoT-related systems like the case study. Security continues to be an issue of significant importance.


2018 ◽  
Vol 8 (5) ◽  
pp. 259
Author(s):  
Mohammed Ali

In this study, the researcher has advocated the importance of human intelligence in language learning since software or any Learning Management System (LMS) cannot be programmed to understand the human context as well as all the linguistic structures contextually. This study examined the extent to which language learning is perilous to machine learning and its programs such as Artificial Intelligence (AI), Pattern Recognition, and Image Analysis used in much assistive learning techniques such as voice detection, face detection and recognition, personalized assistants, besides language learning programs. The researchers argue that language learning is closely associated with human intelligence, human neural networks and no computers or software can claim to replace or replicate those functions of human brain. This study thus posed a challenge to natural language processing (NLP) techniques that claimed having taught a computer how to understand the way humans learn, to understand text without any clue or calculation, to realize the ambiguity in human languages in terms of the juxtaposition between the context and the meaning, and also to automate the language learning process between computers and humans. The study cites evidence of deficiencies in such machine learning software and gadgets to prove that in spite of all technological advancements there remain areas of human brain and human intelligence where a computer or its software cannot enter. These deficiencies highlight the limitations of AI and super intelligence systems of machines to prove that human intelligence would always remain superior.


2021 ◽  
Author(s):  
Andrei Popa ◽  
Ben Amaba ◽  
Jeff Daniels

Abstract A practical framework that outlines the critical steps of a successful process that uses data, machine learning (Ml), and artificial intelligence (AI) is presented in this study. A practical case study is included to demonstrate the process. The use of artificial intelligent and machine learning has not only enhanced but also sped up problem-solving approaches in many domains, including the oil and gas industry. Moreover, these technologies are revolutionizing all key aspects of engineering including; framing approaches, techniques, and outcomes. The proposed framework includes key components to ensure integrity, quality, and accuracy of data and governance centered on principles such as responsibility, equitability, and reliability. As a result, the industry documentation shows that technology coupled with process advances can improve productivity by 20%. A clear work-break-down structure (WBS) to create value using an engineering framework has measurable outcomes. The AI and ML technologies enable the use of large amounts of information, combining static & dynamic data, observations, historical events, and behaviors. The Job Task Analysis (JTA) model is a proven framework to manage processes, people, and platforms. JTA is a modern data-focused approach that prioritizes in order: problem framing, analytics framing, data, methodology, model building, deployment, and lifecycle management. The case study exemplifies how the JTA model optimizes an oilfield production plant, similar to a manufacturing facility. A data-driven approach was employed to analyze and evaluate the production fluid impact during facility-planned or un-planned system disruptions. The workflows include data analytics tools such as ML&AI for pattern recognition and clustering for prompt event mitigation and optimization. The paper demonstrates how an integrated framework leads to significant business value. The study integrates surface and subsurface information to characterize and understand the production impact due to planned and unplanned plant events. The findings led to designing a relief system to divert the back pressure during plant shutdown. The study led to cost avoidance of a new plant, saving millions of dollars, environment impact, and safety considerations, in addition to unnecessary operating costs and maintenance. Moreover, tens of millions of dollars value per year by avoiding production loss of plant upsets or shutdown was created. The study cost nothing to perform, about two months of not focused time by a team of five engineers and data scientists. The work provided critical steps in "creating a trusting" model and "explainability’. The methodology was implemented using existing available data and tools; it was the process and engineering knowledge that led to the successful outcome. Having a systematic WBS has become vital in data analytics projects that use AI and ML technologies. An effective governance system creates 25% productivity improvement and 70% capital improvement. Poor requirements can consume 40%+ of development budget. The process, models, and tools should be used on engineering projects where data and physics are present. The proposed framework demonstrates the business impact and value creation generated by integrating models, data, AI, and ML technologies for modeling and optimization. It reflects the collective knowledge and perspectives of diverse professionals from IBM, Lockheed Martin, and Chevron, who joined forces to document a standard framework for achieving success in data analytics/AI projects.


Sign in / Sign up

Export Citation Format

Share Document