scholarly journals Relations among maximum snow depth, mean air temperature, and precipitation determined from their monthly values in snowy areas of Japan

2007 ◽  
Vol 69 (5) ◽  
pp. 591-599
Author(s):  
Masaaki ISHIZAKA
1996 ◽  
Vol 42 (140) ◽  
pp. 136-140 ◽  
Author(s):  
Tsutomu Nakamura ◽  
Masujiro Shimizu

AbstractReduced amounts of snow in the eight winters from 1986-87 to 1993-94 at Nagaoka, Japan, seem to be due to a winter air-temprature rise. The winter air temprature has shown cyclic varition gradual increase in the past 100years. The linear rate of the temperature rise in the past century was calculated as 1.35°C per 100 years. Both the maximum Snow depth and winter precipitation showed an inversely positive correlation with winter mean air temperature, The square of the statistical correlation coefficient r2was calculated as 0.321 and 0.107. respectively. Statistically smoothed curves or the maximum snow depth and winter precipitation showed maximum values in 1940, Fluctuations in deviation of the maximum Snow depth showed smaller values than in precipitation. The minimum winter mean air temperature obtained from a 10 year moving average curve was found in 1942, and the deviation fom the climatic mean changed from negative to positive in 1949. The change in sign or the temperature deviation and the increase of the deviation may be attributable to global warming.


1996 ◽  
Vol 42 (140) ◽  
pp. 136-140 ◽  
Author(s):  
Tsutomu Nakamura ◽  
Masujiro Shimizu

AbstractReduced amounts of snow in the eight winters from 1986-87 to 1993-94 at Nagaoka, Japan, seem to be due to a winter air-temprature rise. The winter air temprature has shown cyclic varition gradual increase in the past 100years. The linear rate of the temperature rise in the past century was calculated as 1.35°C per 100 years. Both the maximum Snow depth and winter precipitation showed an inversely positive correlation with winter mean air temperature, The square of the statistical correlation coefficient r2 was calculated as 0.321 and 0.107. respectively. Statistically smoothed curves or the maximum snow depth and winter precipitation showed maximum values in 1940, Fluctuations in deviation of the maximum Snow depth showed smaller values than in precipitation. The minimum winter mean air temperature obtained from a 10 year moving average curve was found in 1942, and the deviation fom the climatic mean changed from negative to positive in 1949. The change in sign or the temperature deviation and the increase of the deviation may be attributable to global warming.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Siqiong Luo ◽  
Xuewei Fang ◽  
Shihua Lyu ◽  
Qi Jiang ◽  
Jingyuan Wang

On the basis of observed soil freeze depth data from 14 meteorological stations on the Three Rivers Source Region (TRSR) in China during 1960 to 2014, trends in the freeze depth, first date, last date, and duration of frozen soil were analyzed, together with other meteorological variables, such as air temperature, snow depth, and precipitation, observed at the same locations. The results showed the following. (1) A continuous, accelerated decreasing trend in freeze depth appeared in the TRSR during the 1985–2014 and 2000–2014 periods, compared with that during the 1960–2014 period. (2) The freeze first date had been delayed and the freeze last date had been advanced significantly. The advanced trends in freeze last date were more significant than the delayed trends in freeze first date. The freeze duration also experienced an accelerated decrease. (3) The freeze depth and period were strongly affected by air temperature, thawing index, and soil moisture (precipitation), but not by snow. The freeze depth, freeze first date, freeze last date, and duration also influenced each other. (4) These decreasing trends in freeze depth and duration are expected to continue given the increasing trends in air temperature and precipitation in this region.


2017 ◽  
Vol 58 (75pt1) ◽  
pp. 11-20 ◽  
Author(s):  
Marzena Osuch ◽  
Tomasz Wawrzyniak

ABSTRACTIn this study, seasonality and interannual variability of snow depth at two stations (Hornsund and Barentsburg) located in western Spitsbergen are investigated. For this purpose, the novel Moving Average over Shifting Horizon method combined with trend estimation was used. The Hornsund and Barentsburg stations exhibit similar snow depth trends during early autumn and late spring when statistically significant decreases were estimated at both stations (for August 1984–July 2016). In the remaining period, there are differences in outcomes between stations. The results for Barentsburg from October till the end of May are characterised by the lack of a trend while at Hornsund decreases of snow depth were estimated. The largest changes occur in May when the snow depth was at its maximum. Differences in the estimated tendencies were explained with the help of a trend analysis for air temperature and precipitation. An analysis of maximum snow depth, snow onset date, snow disappearance date and snow-cover duration is included. The results of the assessment depend on the location, with a lack of statistically significant changes in Barentsburg, and later snow onset date, shorter duration and decrease of maximum depth in Hornsund.


2008 ◽  
Vol 49 ◽  
pp. 7-10 ◽  
Author(s):  
Yukari Takeuchi ◽  
Yasoichi Endo ◽  
Shigeki Murakami

AbstractLong-term data of winter air temperature and precipitation were analyzed and the correlation between them investigated in order to identify the factors influencing snow reduction during the recent warmer winters in the heavy-snowfall areas in Japan. A high negative correlation between winter precipitation and air temperature was identified in the heavy-snowfall areas on the Sea of Japan side in the center of the main island (Honshu). It was confirmed that precipitation is mainly caused by cold winter monsoons, and thus correlates to a large extent with air temperature in these areas. The precipitation decrease can be considered an effective factor for the recent reduction in snow as well as the snowfall to precipitation ratio. This should be taken into account for a better prediction of snow reduction in relation to global warming.


2015 ◽  
Vol 56 (70) ◽  
pp. 79-88 ◽  
Author(s):  
Markus Engelhardt ◽  
Thomas V. Schuler ◽  
Liss M. Andreassen

AbstractThis study evaluates sensitivities of glacier mass balance and runoff to both annual and monthly perturbations in air temperature and precipitation at four highly glacierized catchments: Engabreen in northern Norway and Ålfotbreen, Nigardsbreen and Storbreen, which are aligned along a west–east profile in southern Norway. The glacier mass-balance sensitivities to changes in annual air temperature range from 1.74 m w.e. K−1 for Ålfotbreen to 0.55 m w.e. K−1 for Storbreen, the most maritime and the most continental glaciers in this study, respectively. The runoff sensitivities of all catchments are 20–25% per degree temperature change and 6–18% for a 30% precipitation change. A seasonality of the sensitivities becomes apparent. With increasing continentality, the sensitivity of mass balance and runoff to temperature perturbations during summer increases, and the sensitivity of annual runoff to both temperature and precipitation perturbations is constricted towards changes during the ablation period. Comparing sensitivities in northern and southern Norway, as well as the variability across southern Norway, reveals that continentality influences sensitivities more than latitude does.


Sign in / Sign up

Export Citation Format

Share Document