scholarly journals The Effect of Thermal Insulation on Cooling Load in Residential Buildings in Makkah, Saudi Arabia

2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Mosaab Alaboud ◽  
Mohamed Gadi
2018 ◽  
Vol 162 ◽  
pp. 05024
Author(s):  
Mousa Mohamed ◽  
Mohammed Almarshadi

The external heat load of residential buildings in summer is the dominant parameter of the required cooling load and refrigeration capacity of air conditioning systems. The consumed energy of air conditioning system is proportional to the outside conditions and intensity of solar radiation. The maximum heat load of building may occur at 3 O’clock PM, although the peak of solar radiation occurs at noon. The construction materials of building is playing an important rolls of heat transmission through buildings outside walls and glazing windows. The walls thermal insulation can be effective in energy conservation by reducing the cooling load and required electrical energy. The building is constructed from common materials with 0~12 cm thermal insulation in outside walls, ceilings, and double layers glazing windows. The building heat loads are calculated for two models of walls. The optimum thickness of thermal insulation is also determined and is found between 6~8 cm for insulation of thermal conductivity of 0.039 W/m.K the energy saving is 50.45% at 6 cm insulation thickness.


2019 ◽  
Vol 9 (2) ◽  
pp. 3949-3954 ◽  
Author(s):  
F. A. AlFaraidy ◽  
S. Azzam

About half of the total generated electricity in Saudi Arabia (SA) is consumed for the air conditioning of residential buildings. To reduce this burden on the economy as outlined by the country's 2030 vision, the implementation of the Saudi energy conservation code (SBC602) needs to be enforced. This code divided KSA into three climate zones with maximum overall heat transfer coefficients. This study aims to facilitate the use of thermal insulation by analyzing optimum thermal insulation thickness for each zone and calculate the payback period of initial insulation costs. Three cities were selected to represent the three climate zones, Riyadh, Arar, and Turaif. The code-compliant thermal insulation thickness is calculated using these variables: thermal properties of three insulation materials, overall heat transfer coefficients, and three insulated wall structures. It is concluded that external insulation and finish system utilizing polyurethane is the most feasible option with the best thermal performance. Polyurethane thicknesses are ranging from 45mm to 65mm, wall widths are ranging from 250mm to 320mm, while the overall costs are ranging from 20.02 to 24.57 US$/m2. This system is used to conduct a comparison between energy-efficient-building and base-case-building in terms of cooling loads and electrical consumption using hourly-analysis-program (HAP) with international weather data. The simulated annual savings in energy consumption for the three zones are 67.4%, 66.56%, and 67.91%. The economic analysis shows promising payback years, which are 3.1, 3.9, and 4.3 for zone one, zone two and zone three respectively.


2021 ◽  
Vol 13 (15) ◽  
pp. 8595
Author(s):  
Lindita Bande ◽  
Abeer Alshamsi ◽  
Anoud Alhefeiti ◽  
Sarah Alderei ◽  
Sebah Shaban ◽  
...  

The city of Al Ain (Abu Dhabi, UAE) has a mainly low rise residential buildings. Villas as part of a compound or separate units represent the majority of the residential areas in the city. Due to the harsh hot arid climate of Al Ain, the energy demand for the cooling load is quite high. Therefore, it is relevant finding new retrofit strategies that are efficient in reducing the cooling load of the villas. The aim of this study is to analyze one particular strategy (parametric shading structure) in terms of design, construction, cost, energy impact on the selected villa. The main data for this study is taken from the local sources. There are six steps followed in this analysis: case study analysis; climate analysis; parametric structure and PV panels; building energy consumption and outdoor thermal comfort; modelling, simulation, and validation; materials, construction, and cost evaluation. The model of the villa was validated for the full year 2020 based on the electricity bills obtained. After adding the parametric design structure, the reduction after shading is approximately 10%. Meanwhile the UTCI (Universal Thermal Climate Index) dropped from extreme heat stress to strong heat stress (average for the month of March and September). These findings are promising in the retrofit industry due to the advanced calculations used to optimize the parametric design structure.


2021 ◽  
pp. 110719
Author(s):  
Konstantin Verichev ◽  
Montserrat Zamorano ◽  
Armin Fuentes-Sepúlveda ◽  
Nadia Cárdenas-Mayorga ◽  
Manuel Carpio

2021 ◽  
Vol 25 (4 Part B) ◽  
pp. 3103-3112
Author(s):  
Rao Shun

Taking a typical rural building as an example, the paper compares various factors that affect the heat load of the building, studies related literature and the living habits of rural residents, and suggests that the calculated temperature of the heating room in rural residential buildings in cold areas in winter is 14~17?C. Analyze and compare the initial investment and the investment pay-back period after the thermal insulation measures are adopted for each envelope structure. With the dual goals of energy conservation and economy, it is recommended that rural households with different economic conditions adopt different thermal insulation measures to provide clean heating in rural areas in the cold north. Provide strong technical guidance for energy conservation and emission reduction.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Amneh Hamida ◽  
Abdulsalam Alsudairi ◽  
Khalid Alshaibani ◽  
Othman Alshamrani

PurposeBuildings are responsible for the consumption of around 40% of energy in the world and account for one-third of greenhouses gas emissions. In Saudi Arabia, residential buildings consume half of total energy among other building sectors. This study aims to explore the impact of sixteen envelope variables on the operational and embodied carbon of a typical Saudi house with over 20 years of operation.Design/methodology/approachA simulation approach has been adopted to examine the effects of envelope variables including external wall type, roof type, glazing type, window to wall ratio (WWR) and shading device. To model the building and define the envelope materials and quantify the annual energy consumption, DesignBuilder software was used. Following modelling, operational carbon was calculated. A “cradle-to-gate” approach was adopted to assess embodied carbon during the production of materials for the envelope variables based on the Inventory of Carbon Energy database.FindingsThe results showed that operational carbon represented 90% of total life cycle carbon, whilst embodied carbon accounted for 10%. The sensitivity analysis revealed that 25% WWR contributes to a significant increase in operational carbon by 47.4%. Additionally, the efficient block wall with marble has a major embodiment of carbon greater than the base case by 10.7%.Research limitations/implicationsThis study is a contribution to the field of calculating the embodied and operational carbon emissions of a residential unit. Besides, it provides an examination of the impact of each envelope variable on both embodied and operational carbon. This study is limited by the impact of sixteen envelope variables on the embodied as well as operational carbon.Originality/valueThis study is the first attempt on investigating the effects of envelop variables on carbon footprint for residential buildings in Saudi Arabia.


Sign in / Sign up

Export Citation Format

Share Document