scholarly journals Improved point clouds from a heritage artifact depth low-cost acquisition

2020 ◽  
Vol 12 (1) ◽  
pp. 84-94
Author(s):  
Pedro Oliveira Raimundo ◽  
Karl Philips Apaza-Agüero

Poor data acquisition from low-cost cameras, such as low-resolution depth maps or high level of noise or point clouds generated with insufficient information from an object, limits the use of such cameras for heritage artifacts 3D reconstruction. This work proposes to improve this depth low-cost acquisition by using a new approach based on the Super-Resolution technique. The proposed approach has been applied to several artifacts of the Federal University of Bahia Museum of Archaeology and Ethnology (MAE/UFBA). As shown in the results, our approach improved the quality of point clouds generated from tested heritage artifacts. Results indicate that whenever artifact geometry is gained via our method there is actual reconstruction of detail or accuracy improvements, whereas a reduction in number of points of the clouds, if any, would indicate the removal of inconsistencies or noise from the input data without loss of detail.

Author(s):  
S. Hosseinyalamdary ◽  
A. Yilmaz

Laser scanner point cloud has been emerging in Photogrammetry and computer vision to achieve high level tasks such as object tracking, object recognition and scene understanding. However, low cost laser scanners are noisy, sparse and prone to systematic errors. This paper proposes a novel 3D super resolution approach to reconstruct surface of the objects in the scene. This method works on sparse, unorganized point clouds and has superior performance over other surface recovery approaches. Since the proposed approach uses anisotropic diffusion equation, it does not deteriorate the object boundaries and it preserves topology of the object.


Agro Ekonomi ◽  
2021 ◽  
Vol 32 (2) ◽  
Author(s):  
Setia Sari Girsang ◽  
Agung B Santosa ◽  
Tommy Purba ◽  
Deddy R Siagian ◽  
Khadijah E Ramija

Accelerating the introduction of a new technological package is needed to increase the productivity of high elevation puddled rice in Humbang Hasundutan. The objectives of the study are to find out the perception of the existence of technological packages and farmers' preference for a new technological package. The study used a survey method with primary data gathered using questionnaires. The criteria of locations and respondents were used to obtain relevant respondents and data concerning their knowledge of high elevation puddled rice cultivation.  The collected data were processed by using Importance Performance Analysis in order to find out the level of Importance and Satisfaction of the indicators and the valued aspects in the technological package components. The results of the study showed that the socio-economic aspects had to be heeded in organizing the technological package. Indicators having a high level of importance and a low level of satisfaction consisted of production cost, quality of seeds, farmer groups empowerment, technology information institution, capital cost, agricultural tools and machines, pest control, sales price, irrigation canals, and farm roads. On the other hand, introducing new superior seeds, productivity attribute and planting age were important indicators for local farmers as to improve the quality of existing seeds. Farmers group expected that the technological package had a high level of productivity, better access to input, low cost, and good user-friendliness in its application.


2018 ◽  
Author(s):  
Hongqiang Ma ◽  
Wei Jiang ◽  
Jianquan Xu ◽  
Yang Liu

ABSTRACTSuper-resolution localization microscopy allows visualization of biological structure at nanoscale resolution. However, the presence of heterogeneous background can degrade the nanoscale resolution by tens of nanometers and introduce significant image artifacts. Here we develop a new approach, referred to as extreme value based emitter recovery (EVER), to accurately recover the distorted fluorescent emitters from heterogeneous background. Through numerical simulation and biological experiments, we demonstrate that EVER significantly improves the accuracy and fidelity of the reconstructed super-resolution image for a wide variety of imaging characteristics. EVER requires no manual adjustment of parameters and is implemented as an easy-to-use ImageJ plugin that can immediately enhance the quality of super-resolution images. Our method paves the way for accurate nanoscale imaging of samples with heterogeneous background fluorescence, such as thicker tissue and cells.


2021 ◽  
Vol 7 (2) ◽  
pp. 335-338
Author(s):  
Sina Walluscheck ◽  
Thomas Wittenberg ◽  
Volker Bruns ◽  
Thomas Eixelberger ◽  
Ralf Hackner

Abstract For the image-based documentation of a colonoscopy procedure, a 3D-reconstuction of the hollow colon structure from endoscopic video streams is desirable. To obtain this reconstruction, 3D information about the colon has to be extracted from monocular colonoscopy image sequences. This information can be provided by estimating depth through shape-from-motion approaches, using the image information from two successive image frames and the exact knowledge of their disparity. Nevertheless, during a standard colonoscopy the spatial offset between successive frames is continuously changing. Thus, in this work deep convolutional neural networks (DCNNs) are applied in order to obtain piecewise depth maps and point clouds of the colon. These pieces can then be fused for a partial 3D reconstruction.


Author(s):  
J. Kern ◽  
M. Weinmann ◽  
S. Wursthorn

After scanning or reconstructing the geometry of objects, we need to inspect the result of our work. Are there any parts missing? Is every detail covered in the desired quality? We typically do this by looking at the resulting point clouds or meshes of our objects on-screen. What, if we could see the information directly visualized on the object itself? Augmented reality is the generic term for bringing virtual information into our real environment. In our paper, we show how we can project any 3D information like thematic visualizations or specific monitoring information with reference to our object onto the object’s surface itself, thus augmenting it with additional information. For small objects that could for instance be scanned in a laboratory, we propose a low-cost method involving a projector-camera system to solve this task. The user only needs a calibration board with coded fiducial markers to calibrate the system and to estimate the projector’s pose later on for projecting textures with information onto the object’s surface. Changes within the projected 3D information or of the projector’s pose will be applied in real-time. Our results clearly reveal that such a simple setup will deliver a good quality of the augmented information.


Author(s):  
Zihan Liu ◽  
Guanghong Gong ◽  
Ni Li ◽  
Zihao Yu

Three-dimensional (3D) reconstruction of a human head with high precision has promising applications in scientific research, product design and other fields. However, it still faces resistance from two factors. One is inaccurate registration caused by symmetrical distribution of head feature points, and the other is economic burden due to high-accuracy sensors. Research on 3D reconstruction with portable consumer RGB-D sensors such as the Microsoft Kinect has been highlighted in recent years. Based on our multi-Kinect system, a precise and low-cost three-dimensional modeling method and its system implementation are introduced in this paper. A registration method for multi-source point clouds is provided, which can reduce the fusion differences and reconstruct the head model accurately. In addition, a template-based texture generation algorithm is presented to generate a fine texture. The comparison and analysis of our experiments show that our method can reconstruct a head model in an acceptable time with less memory and better effect.


2021 ◽  
Author(s):  
Rishi Malhan ◽  
Rex Jomy Joseph ◽  
Prahar M. Bhatt ◽  
Brual Shah ◽  
Satyandra K. Gupta

Abstract 3D reconstruction technology is used in a wide variety of applications. Currently, automatically creating accurate pointclouds for large parts requires expensive hardware. We are interested in using low-cost depth cameras mounted on commonly available industrial robots to create accurate pointclouds for large parts automatically. Manufacturing applications require fast cycle times. Therefore, we are interested in speeding up the 3D reconstruction process. We present algorithmic advances in 3D reconstruction that achieve a sub-millimeter accuracy using a low-cost depth camera. Our system can be used to determine a pointcloud model of large and complex parts. Advances in camera calibration, cycle time reduction for pointcloud capturing, and uncertainty estimation are made in this work. We continuously capture point-clouds at an optimal camera location with respect to part distance during robot motion execution. The redundancy in pointclouds achieved by the moving camera significantly reduces errors in measurements without increasing cycle time. Our system produces sub-millimeter accuracy.


Servis plus ◽  
2016 ◽  
Vol 10 (1) ◽  
pp. 3-15
Author(s):  
Наталья Платонова ◽  
Natalya Platonova ◽  
Ольга Вапнярская ◽  
Olga Vapnyarskaya

This article continues the series of publications of authors, in which they presented a description of the conceptual basis of auditing service, its methodological foundations, recommendations for the standardization and separate objects and processes. The article presents the description of a new approach to the application of the concept and methodology service audit. Previously the audit service was viewed solely as a method of monitoring the adequacy, service quality and its conformity with the needs of the target consumer groups, designed for individual enterprises and their associations. Developing the service audit issues, the authors propose opportunities in research at the mesolevel (at the regional level). Methodology service audit was used in the project to study service within the boundaries of one of the tourist destinations in Russia. The difference is in the fact that the method of service audits, including secret shopper method, was applied to a diverse set of objects constituting the regional tourism infrastructure. This methodological tool was the same for all objects, which required a determination common to a variety of enterprises of the conditions and elements of service of tourists. This approach allowed creating a unified database of the obtained primary information, and later conducting a comparative study. The article presents some results of using the service audit methods, data and conclusions regarding the completeness and quality of the tourism service destination, obtained with its help. The results of the service audit of the regional tourism infrastructure describe the quality of service in such elements of the tourist infrastructure, as hotels and other accommodation facilities, catering facilities, objects and means of entertainment, objects of cognitive, business, medical, sports and other purposes. The authors also presented a brief description of the methodology of used approach. Experience showed that such a project has all the advantages of using the method of mystery shopping, including relatively low cost, the shortening of studies, etc. the Conclusions resulting from the project were of interest to investors and regional tourism administrations.


2018 ◽  
Vol 927 ◽  
pp. 43-47
Author(s):  
V.K. Afanasyev ◽  
A.P. Chernysh ◽  
S.V. Dolgova

This article develops a fundamentally new approach in the selection of optimal methods for restoring of worn surfaces of agricultural machines’ tools with the formation and application of technological repair units. Based on the systematization and linkage of modular worn-out surfaces, their operating conditions, technological environment and the choice of their optimal combinations, it found a low-cost method of restoring details with white cast iron to gain a necessary quality of a new surface layer.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5187
Author(s):  
Víctor Meana ◽  
Eduardo Cuesta ◽  
Braulio J. Álvarez

To ensure that measurements can be made with non-contact metrology technologies, it is necessary to use verification and calibration procedures using precision artefacts as reference elements. In this environment, the need for increasingly accurate but also more cost-effective calibration artefacts is a clear demand in industry. The aim of this work is to demonstrate the feasibility of using low-cost precision spheres as reference artefacts in calibration and verification procedures of non-contact metrological equipment. Specifically, low-cost precision stainless steel spheres are used as reference artefacts. Obviously, for such spheres to be used as standard artefacts, it is necessary to change their optical behavior by removing their high brightness. For this purpose, the spheres are subjected to a manual sandblasting process, which is also a very low-cost process. The equipment used to validate the experiment is a laser triangulation sensor mounted on a Coordinate Measuring Machine (CMM). The CMM touch probe, which is much more accurate, will be used as a device for measuring the influence of sandblasting on the spheres. Subsequently, the influence of this post-processing is also checked with the laser triangulation sensor. Ultimately, the improvement in the quality of the point clouds captured by the laser sensor will be tested after removing the brightness, which distorts and reduces the quantity of points as well as the quality of the point clouds. In addition to the number of points obtained, the parameters used to study the effect of sandblasting on each sphere, both in contact probing and laser scanning, are the measured diameter, the form error, as well as the standard deviation of the point cloud regarding the best-fit sphere.


Sign in / Sign up

Export Citation Format

Share Document