scholarly journals MODELING, SIMULATION AND NEURAL CONTROL OF WHEELED INVERTED PENDULUM

Author(s):  
Muhammad Yasir Amir Khan ◽  
Vali Uddin Abbas
Author(s):  
Gustavo Diniz Silva ◽  
Bruno Luiz Pereira ◽  
Alexandre Sousa ◽  
Leonardo Sanches ◽  
José Jean Paul Zanlucchi de Souza Tavares ◽  
...  

2014 ◽  
Vol 971-973 ◽  
pp. 714-717 ◽  
Author(s):  
Xiang Shi ◽  
Zhe Xu ◽  
Qing Yi He ◽  
Ka Tian

To control wheeled inverted pendulum is a good way to test all kinds of theories of control. The control law is designed, and it based on the collaborative simulation of MATLAB and ADAMS is used to control wheeled inverted pendulum. Then, with own design of hardware and software of control system, sliding mode control is used to wheeled inverted pendulum, and the experimental results of it indicate short adjusting time, the small overshoot and high performance.


2015 ◽  
Vol 73 (6) ◽  
Author(s):  
Amir A. Bature ◽  
Salinda Buyamin ◽  
Mohamad N. Ahmad ◽  
Mustapha Muhammad ◽  
Auwalu A. Muhammad

In order to predict and analyse the behaviour of a real system, a simulated model is needed. The more accurate the model the better the response is when dealing with the real plant. This paper presents a model predictive position control of a Two Wheeled Inverted Pendulum robot. The model was developed by system identification using a grey box technique. Simulation results show superior performance of the gains computed using the grey box model as compared to common linearized mathematical model. 


Machines ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 205
Author(s):  
Fu-Cheng Wang ◽  
Yu-Hong Chen ◽  
Zih-Jia Wang ◽  
Chi-Hao Liu ◽  
Pei-Chun Lin ◽  
...  

This paper develops a decoupled multi-loop control for a two-wheeled inverted pendulum (TWIP) robot that can assist user’s with walking. The TWIP robot is equipped with two wheels driven by electrical motors. We derive the system’s transfer function and design a robust loop-shaping controller to balance the system. The simulation and experimental results show that the TWIP system can be balanced but might experience velocity drifts because its balancing point is affected by model variations and disturbances. Therefore, we propose a multi-loop control layout consisting of a velocity loop and a position loop for the TWIP robot. The velocity loop can adjust the balancing point in real-time and regulate the forward velocity, while the position loop can achieve position tracking. For walking assistance, we design a decoupled control structure that transfers the linear and rotational motions of the robot to the commands of two parallel motors. We implement the designed controllers for simulation and experiments and show that the TWIP system employing the proposed decoupled multi-loop control can provide satisfactory responses when assisting with walking.


Sign in / Sign up

Export Citation Format

Share Document