scholarly journals Correlation of umbilical cord blood volume with CD34+ cells concentration

Author(s):  
Tulika Chandra ◽  
Sheeba Afreen ◽  
Ashutosh Kumar ◽  
Uma Singh
Blood ◽  
2000 ◽  
Vol 96 (6) ◽  
pp. 2125-2133 ◽  
Author(s):  
Robert W. Storms ◽  
Margaret A. Goodell ◽  
Alan Fisher ◽  
Richard C. Mulligan ◽  
Clay Smith

Abstract A novel Hoechst 33342 dye efflux assay was recently developed that identifies a population of hematopoietic cells termed side population (SP) cells. In the bone marrow of multiple species, including mice and primates, the SP is composed primarily of CD34−cells, yet has many of the functional properties of hematopoietic stem cells (HSCs). This report characterizes SP cells from human umbilical cord blood (UCB). The SP in unfractionated UCB was enriched for CD34+ cells but also contained a large population of CD34− cells, many of which were mature lymphocytes. SP cells isolated from UCB that had been depleted of lineage-committed cells (Lin− UCB) contained CD34+ and CD34− cells in approximately equivalent proportions. Similar to previous descriptions of human HSCs, the CD34+Lin− SP cells were CD38dimHLA-DRdimThy-1dimCD45RA−CD71−and were enriched for myelo-erythroid precursors. In contrast, the CD34−Lin− SP cells were CD38−HLA-DR−Thy-1−CD71−and failed to generate myelo-erythroid progeny in vitro. The majority of these cells were CD7+CD11b+CD45RA+, as might be expected of early lymphoid cells, but did not express other lymphoid markers. The CD7+CD34−Lin− UCB SP cells did not proliferate in simple suspension cultures but did differentiate into natural killer cells when cultured on stroma with various cytokines. In conclusion, the human Lin− UCB SP contains both CD34+ multipotential stem cells and a novel CD7+CD34−Lin− lymphoid progenitor. This observation adds to the growing body of evidence that CD34− progenitors exist in humans.


2021 ◽  
Vol 10 (2) ◽  
pp. 293
Author(s):  
Gee-Hye Kim ◽  
Jihye Kwak ◽  
Sung Hee Kim ◽  
Hee Jung Kim ◽  
Hye Kyung Hong ◽  
...  

Umbilical cord blood (UCB) is used as a source of donor cells for hematopoietic stem cell (HSC) transplantation. The success of transplantation is dependent on the quality of cord blood (CB) units for maximizing the chance of engraftment. Improved outcomes following transplantation are associated with certain factors of cryopreserved CB units: total volume and total nucleated cell (TNC) count, mononuclear cell (MNC) count, and CD34+ cell count. The role of the storage period of CB units in determining the viability and counts of cells is less clear and is related to the quality of cryopreserved CB units. Herein, we demonstrate the recovery of viable TNCs and CD34+ cells, as well as the MNC viability in 20-year-old cryopreserved CB units in a CB bank (MEDIPOST Co., Ltd., Seongnam-si, Gyeonggi-do, Korea). In addition, cell populations in CB units were evaluated for future clinical applications. The stable recovery rate of the viability of cryopreserved CB that had been stored for up to 20 years suggested the possibility of uses of the long-term cryopreservation of CB units. Similar relationships were observed in the recovery of TNCs and CD34+ cells in units of cryopreserved and fresh CB. The high-viability recovery of long-term cryopreserved CB suggests that successful hematopoietic stem cell (HSC) transplantation and other clinical applications, which are suitable for treating incurable diseases, may be performed regardless of long-term storage.


2007 ◽  
Vol 85 (1) ◽  
pp. 78-84 ◽  
Author(s):  
Masayoshi Minegishi ◽  
Tsuneo Itoh ◽  
Narumi Fukawa ◽  
Tamie Kitaura ◽  
Junko Miura ◽  
...  

Transfusion ◽  
2008 ◽  
Vol 48 (10) ◽  
pp. 2235-2245 ◽  
Author(s):  
Eun Jung Baek ◽  
Han-Soo Kim ◽  
Sinyoung Kim ◽  
Honglien Jin ◽  
Tae-Yeal Choi ◽  
...  

2012 ◽  
Vol 49 (3-4) ◽  
pp. 166-169 ◽  
Author(s):  
José C. Jaime-Pérez ◽  
Julia E. Colunga-Pedraza ◽  
Roberto Monreal-Robles ◽  
Perla R. Colunga-Pedraza ◽  
Nereida Méndez-Ramírez ◽  
...  

2020 ◽  
Vol 9 (6) ◽  
pp. 1670
Author(s):  
Daniela Cilloni ◽  
Jessica Petiti ◽  
Valentina Campia ◽  
Marina Podestà ◽  
Margherita Squillario ◽  
...  

During the phase of proliferation needed for hematopoietic reconstitution following transplantation, hematopoietic stem/progenitor cells (HSPC) must express genes involved in stem cell self-renewal. We investigated the expression of genes relevant for self-renewal and expansion of HSPC (operationally defined as CD34+ cells) in steady state and after transplantation. Specifically, we evaluated the expression of ninety-one genes that were analyzed by real-time PCR in CD34+ cells isolated from (i) 12 samples from umbilical cord blood (UCB); (ii) 15 samples from bone marrow healthy donors; (iii) 13 samples from bone marrow after umbilical cord blood transplant (UCBT); and (iv) 29 samples from patients after transplantation with adult hematopoietic cells. The results show that transplanted CD34+ cells from adult cells acquire an asset very different from transplanted CD34+ cells from cord blood. Multivariate machine learning analysis (MMLA) showed that four specific gene signatures can be obtained by comparing the four types of CD34+ cells. In several, but not all cases, transplanted HSPC from UCB overexpress reprogramming genes. However, these remarkable changes do not alter the commitment to hematopoietic lineage. Overall, these results reveal undisclosed aspects of transplantation biology.


Transfusion ◽  
2020 ◽  
Vol 60 (10) ◽  
pp. 2348-2358
Author(s):  
Marie‐Ève Rhéaume ◽  
Pascal Rouleau ◽  
Tony Tremblay ◽  
Isabelle Paré ◽  
Lionel Loubaki

Blood ◽  
1997 ◽  
Vol 90 (1) ◽  
pp. 85-96 ◽  
Author(s):  
Christopher J. Hogan ◽  
Elizabeth J. Shpall ◽  
Oren McNulty ◽  
Ian McNiece ◽  
John E. Dick ◽  
...  

Abstract Understanding the repopulating characteristics of human hematopoietic stem/progenitor cell fractions is crucial for predicting their performance after transplant into high-risk patients following high-dose therapy. We report that human umbilical cord blood cells, 78% to 100% of which express the hematopoietic progenitor cell surface marker CD34, can consistently engraft, develop, and proliferate in the hematopoietic tissues of sublethally irradiated NOD/LtSz-scid/scid mice. Engraftment and development of CD34+ cells is not dependent on human growth factor support. CD34+ cells home to the mouse bone marrow (BM) that becomes the primary site of human hematopoietic development containing myeloid, lymphoid, erythroid, and CD34+ progenitor populations. Myeloid, and in particular lymphoid cells possessing more mature cell surface markers, comprise the human component of mouse spleen and peripheral blood, indicating that development proceeds from primary hematopoietic sites to the periphery. Repopulation of secondary recipients with human cells by BM from primary recipients demonstrates the maintenance of substantial proliferation capacity of the input precursor population. These data suggest that the cells capable of initiating human cell engraftment (SCID-repopulating cells) are contained in the CD34+ cell fraction, and that this mouse model will be useful for assaying the developmental potential of other rare human hematopoietic cell fractions in vivo.


2014 ◽  
Vol 23 (8) ◽  
pp. 959-979 ◽  
Author(s):  
Sheng-Hsien Chen ◽  
Jhi-Joung Wang ◽  
Chung-Hwan Chen ◽  
Hsiu-Kang Chang ◽  
Mao-Tsun Lin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document