Characterization of molecular mechanisms underlying the neuroprotective and neurotrophic activities of Chinese medicinal compound puerarin and electroacupuncture : implications for the therapy of Parkinson's disease

Author(s):  
Yingke Zhao
Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 981
Author(s):  
Liesel Goveas ◽  
Eugénie Mutez ◽  
Marie-Christine Chartier-Harlin ◽  
Jean-Marc Taymans

Mutations in the Parkinson’s disease (PD) protein Leucine Rich Repeat Kinase 2 (LRRK2) have been under study for more than 15 years and our understanding of the cellular phenotypes for the pathogenic mutant forms of LRRK2 has significantly advanced. In parallel to research on LRRK2 mutations in experimental systems, clinical characterization of patients carrying LRRK2 mutations has advanced, as has the analysis of cells that are derived from these patients, including fibroblasts, blood-derived cells, or cells rendered pluripotent. Under the hypothesis that patient clinical phenotypes are a consequence of a cascade of underlying molecular mechanisms gone astray, we currently have a unique opportunity to compare findings from patients and patient-derived cells to ask the question of whether the clinical phenotype of LRRK2 Parkinson’s disease and cellular phenotypes of LRRK2 patient-derived cells may be mutually informative. In this review, we aim to summarize the available information on phenotypes of LRRK2 mutations in the clinic, in patient-derived cells, and in experimental models in order to better understand the relationship between the three at the molecular and cellular levels and identify trends and gaps in correlating the data.


2004 ◽  
Vol 31 (S 1) ◽  
Author(s):  
A Thomas ◽  
R Hilker ◽  
E Kalbe ◽  
S Weisenbach ◽  
K Herholz ◽  
...  

2021 ◽  
Vol 22 (15) ◽  
pp. 8338
Author(s):  
Asad Jan ◽  
Nádia Pereira Gonçalves ◽  
Christian Bjerggaard Vaegter ◽  
Poul Henning Jensen ◽  
Nelson Ferreira

The pathological aggregation of the presynaptic protein α-synuclein (α-syn) and propagation through synaptically coupled neuroanatomical tracts is increasingly thought to underlie the pathophysiological progression of Parkinson’s disease (PD) and related synucleinopathies. Although the precise molecular mechanisms responsible for the spreading of pathological α-syn accumulation in the CNS are not fully understood, growing evidence suggests that de novo α-syn misfolding and/or neuronal internalization of aggregated α-syn facilitates conformational templating of endogenous α-syn monomers in a mechanism reminiscent of prions. A refined understanding of the biochemical and cellular factors mediating the pathological neuron-to-neuron propagation of misfolded α-syn will potentially elucidate the etiology of PD and unravel novel targets for therapeutic intervention. Here, we discuss recent developments on the hypothesis regarding trans-synaptic propagation of α-syn pathology in the context of neuronal vulnerability and highlight the potential utility of novel experimental models of synucleinopathies.


RSC Advances ◽  
2021 ◽  
Vol 11 (17) ◽  
pp. 10385-10392
Author(s):  
Dong-Fang Zhao ◽  
Yu-Fan Fan ◽  
Fang-Yuan Wang ◽  
Fan-Bin Hou ◽  
Frank J. Gonzalez ◽  
...  

Discovery and characterization of natural human catechol-O-methyltransferase (hCOMT) inhibitors for Parkinson's disease treatment.


Author(s):  
Rahel Feleke ◽  
Regina H. Reynolds ◽  
Amy M. Smith ◽  
Bension Tilley ◽  
Sarah A. Gagliano Taliun ◽  
...  

AbstractParkinson’s disease (PD), Parkinson’s disease with dementia (PDD) and dementia with Lewy bodies (DLB) are three clinically, genetically and neuropathologically overlapping neurodegenerative diseases collectively known as the Lewy body diseases (LBDs). A variety of molecular mechanisms have been implicated in PD pathogenesis, but the mechanisms underlying PDD and DLB remain largely unknown, a knowledge gap that presents an impediment to the discovery of disease-modifying therapies. Transcriptomic profiling can contribute to addressing this gap, but remains limited in the LBDs. Here, we applied paired bulk-tissue and single-nucleus RNA-sequencing to anterior cingulate cortex samples derived from 28 individuals, including healthy controls, PD, PDD and DLB cases (n = 7 per group), to transcriptomically profile the LBDs. Using this approach, we (i) found transcriptional alterations in multiple cell types across the LBDs; (ii) discovered evidence for widespread dysregulation of RNA splicing, particularly in PDD and DLB; (iii) identified potential splicing factors, with links to other dementia-related neurodegenerative diseases, coordinating this dysregulation; and (iv) identified transcriptomic commonalities and distinctions between the LBDs that inform understanding of the relationships between these three clinical disorders. Together, these findings have important implications for the design of RNA-targeted therapies for these diseases and highlight a potential molecular “window” of therapeutic opportunity between the initial onset of PD and subsequent development of Lewy body dementia.


PLoS ONE ◽  
2017 ◽  
Vol 12 (3) ◽  
pp. e0172394 ◽  
Author(s):  
Robert Westphal ◽  
Camilla Simmons ◽  
Michel B. Mesquita ◽  
Tobias C. Wood ◽  
Steve C. R. Williams ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document