scholarly journals The nuclear channel effect in the isomeric ratio of the reaction products

2019 ◽  
Vol 9 (1) ◽  
pp. 9-20
Author(s):  
Duc Thiep Tran ◽  
Thi An Truong ◽  
Minh Hue Bui ◽  
Viet Cuong Phan ◽  
Belov A. G. ◽  
...  

This work presents the experimental study of the isomeric ratio of 115mCd to 115gCd produced in 116Cd(γ, n)115m,gCd photonuclear reaction and 116Cd(n, γ)115m,gCd neutron capture reaction by thermal, epithermal and mixed thermal and epithermal neutrons. The investigated samples were natural cadmium irradiated at the bremsstrahlung photon flux, in the neutron source constructed at the electron accelerator Microtron MT-25 of the Flerov Laboratory of Nuclear Reaction, Joint Institute for Nuclear Research, Dubna, Russia. The results were analyzed, discussed, compared and combined with those of other authors in the existing literature to examine the role of the nuclear channel effect in the isomeric ratio and provide the nuclear data for theoretical model interpretation of nuclear reactions and applied research.

2021 ◽  
Vol 10 (1) ◽  
pp. 1-10
Author(s):  
Thiep Tran Duc ◽  
An Truong Thi ◽  
Hue Bui Minh ◽  
Cuong Phan Viet ◽  
Ha Nguyen Hong ◽  
...  

The isomeric ratio (IR) of isomeric pair 109m,gPd, produced in 110Pd(γ, n)109m,gCd reaction and 108Pd(n, γ)109m,gPd neutron capture reactions, induced by thermal, epithermal and mixed thermal-epithermal neutrons have been determined. The off-line activation technique using a spectroscopic system consisting of a HPGe semiconductor detector with high energy resolution and a PC based 8192 channel analyzer (CANBERRA) was applied. The investigated samples were prepared from the 99.99 % purity PdO and irradiated at the electron accelerator Microtron MT-25 of the Joint Institute for Nuclear Research Dubna, Russia. The data analysis and necessary corrections were made to upgrade the precision of the experimental method. The obtained results were discussed, compared and combined with those from other authors to point out the role of the reaction channels in nuclear reactions.


Vestnik RFFI ◽  
2019 ◽  
pp. 87-104
Author(s):  
Yuri Ts. Oganessian

In the sixties of the XX century, the possibility of existence of the region of increased stability of superheavy nuclei in the vicinity of Z | 114 and N | 184 was proved. For the first time a successful synthesis of superheavy elements was carried out in the Flerov Laboratory of Nuclear Reactions of the Joint Institute for Nuclear Research (JINR). Superheavy elements of D.I. Mendeleev Periodic Table of the Elements with atomic numbers 114–118 were synthesized in the fusion reactions of the nuclei of the transuranic elements with calcium-48 nuclei. The article deals with the choice of reactions for the synthesis of new elements, methods of studying their nuclear-physical and chemical properties. The experimental complex “Factory of superheavy elements” created in JINR and prospects of further research development are described.


2008 ◽  
Vol 18 (1) ◽  
pp. 58-64 ◽  
Author(s):  
Tran Duc Thiep ◽  
Truong Thi An ◽  
Nguyen The Vinh ◽  
Phan Viet Cuong ◽  
Nguyen Tuan Khai ◽  
...  

In this work we present the results of measurement of the isomeric ratio of fission fragment e in photofission of 237Np induced by bremsstrahlung in the Giant Dipole Resonance Region by the method using the inert gaseous flow. The experiments have been performed at the electron accelerator Microtron MT-25 of the Flerov laboratory of Nuclear Reaction, Joint Institute for Nuclear Research, Dubna, Russia. The results were discussed and compared with that of other authors.


2008 ◽  
Vol 18 (1) ◽  
pp. 58-64
Author(s):  
Tran Duc Thiep ◽  
Truong Thi An ◽  
Nguyen The Vinh ◽  
Phan Viet Cuong ◽  
Nguyen Tuan Khai ◽  
...  

In this work we present the results of measurement of the isomeric ratio of fission fragment e in photofission of 237Np induced by bremsstrahlung in the Giant Dipole Resonance Region by the method using the inert gaseous flow. The experiments have been performed at the electron accelerator Microtron MT-25 of the Flerov laboratory of Nuclear Reaction, Joint Institute for Nuclear Research, Dubna, Russia. The results were discussed and compared with that of other authors.


2017 ◽  
Vol 314 (3) ◽  
pp. 1777-1784 ◽  
Author(s):  
Tran Duc Thiep ◽  
Truong Thi An ◽  
Phan Viet Cuong ◽  
Bui Minh Hue ◽  
Nguyen The Vinh ◽  
...  

2021 ◽  
Vol 256 ◽  
pp. 00014
Author(s):  
Ivan Ruskov ◽  
Yury Kopach ◽  
Vyacheslav Bystritsky ◽  
Vadim Skoy ◽  
Dimitar Grozdanov ◽  
...  

In the framework of TANGRA-project at the Frank Laboratory of Neutron Physics of the Joint Institute for Nuclear research in Dubna (Russia), two experimental setups (Fig. 1) have been designed and tested for investigation of 14-MeV neutron-induced nuclear reactions on a number of important for nuclear science and engineering isotopes. As a source of 14-MeV “tagged” neutrons we are using the VNIIA ING-27 steady-state portable neutron generator with embedded in its vacuum tube 64-pixel charge-particle detector. The “Romashka” system is an array of up-to 24 hexagonal NaI(Tl)-crystal scintillation probes, while the “Romasha” array consists of 18 cylindrical BGO-crystal detectors of neutrons and gamma-rays. In addition to these detectors there is a HPGe gamma-ray spectrometer and a number of Stilbene detectors that can be added for high-resolution gamma-ray spectrometry and neutron-gamma detection. The main characteristics of the neutron-induced nuclear reaction products can be investigated by commissioning the detectors in suitable for these experiments’ geometries. Both setups can be used for doing basic and applied scientific research, because they permit simultaneously to measure the energy, angle and multiplicity distributions of gamma-rays and neutrons, produced in the competitive neutron-induced nuclear reactions (n, n’γ), (n,2n), (n, xnγ) and (n, f) in pure or complex substances.


Author(s):  
Yu. Ts. Oganessian

Synthesis of superheavy elements predicted by microscopic nuclear theory is investigated. The heaviest elements with Z = 114–118 were synthesized by fusion reactions of actinide nuclei with 48Ca ions accelerated using the U-400 complex at the Flerov Laboratory of Nuclear Reactions (FLNR), one of seven laboratories that comprise the Joint Institute for Nuclear Research (JINR) located in Dubna, Russia. The experiments were carried out in collaboration with physicists and chemists working at the Livermore and Oak Ridge national laboratories in located in California and Tennessee, respectively. Discovery of these elements allowed completion of the seventh period of the periodic table. The microscopic nuclear theory’s fundamental predictions about the possible existence of superheavy elements received the experimental confirmation. A new laboratory, i.e., the "STE Factory" associated with the JINR FLNR, has been established to research superheavy nuclei.


Sign in / Sign up

Export Citation Format

Share Document