scholarly journals COMPATIBILITY BETWEEN THE STEM VOLUME AND TAPER EQUATIONS VOLUME FOR BLACK WATTLE TREES

FLORESTA ◽  
2020 ◽  
Vol 50 (3) ◽  
pp. 1518
Author(s):  
Marcos Behling ◽  
Henrique Soares Koehler ◽  
Alexandre Behling

A system of equations widely used in Forest Engineering by the international community of researchers consists of a combination of a volumetric function and a taper function, with the purpose of making volume estimates compatible. When using the volume function and the taper function in a system, the result of the volume estimated by the two functions should be compatible, meaning that the volume estimated by the volumetric function should not differ from the volume obtained by integrating the taper function. Thus, the purpose of this paper was to develop and present the procedures of a system of equations to make volume estimates from both volume and taper equations compatible, and then compare it to the traditional approach, which is used in forestry companies. The procedures proposed were applied to a data set on the Acacia mearnsii De Wild. (black wattle) at sites where the plantation of this species is concentrated in the state of Rio Grande do Sul. The data set included 343 trees ranging from 5 to 10.75 years of age. It was noted that the lack of volume compatibility, in absolute terms, grows exponentially with the size of the tree. The quality of the estimates using the system of compatible equations did not differ from those obtained from the traditional model, therefore, the former is preferable. Furthermore, it was noted that the residuals from the volume and taper equations are correlated, which suggests that the system of equations be fitted simultaneously.

FLORESTA ◽  
2021 ◽  
Vol 51 (2) ◽  
pp. 521
Author(s):  
Marcos Behling ◽  
Henrique Soares Koehler ◽  
Alexandre Behling

When modeling the taper and volume, it is desired that the volume estimates obtained by using these two methods are compatible, where the total stem volume estimates shall not differ when using a total volume equation and the volume calculated by integrating the taper equation. There are several of such systems proposed in the literature, in which modifications in the volume and taper models were made to obtain compatible systems. This paper introduces an idea to obtain compatibility in a simpler way, without the need to modify the volume and taper models. Thus, the overall objective of this study was to develop and present a procedure to obtain compatibility between the Spurr function volume and the Kozak’s taper function and quintic polynomial volumes for Acacia mearnsii De Wild trees and compare the results to the traditional method of the same system of equations. The procedures proposed were applied on data on the Acacia mearnsii De Wild (black wattle) species in the towns of Cristal, Piratini, and Encruzilhada in the south of the state of Rio Grande do Sul, Brazil. The data set included 343 trees ranging from 5 to 10.75 years of age. The quality of the fitting for the volume and taper equations fitted using procedures 1 and 2 is similar, and both are compatible. The system of equations presented in procedure 2 is simpler to be applied when compared to procedure 1.


2015 ◽  
Vol 45 (6) ◽  
pp. 647-658 ◽  
Author(s):  
Manuel Arias-Rodil ◽  
Ulises Diéguez-Aranda ◽  
Francisco Rodríguez Puerta ◽  
Carlos Antonio López-Sánchez ◽  
Elena Canga Líbano ◽  
...  

The parsimonious taper function proposed by Riemer et al. (1995. Allg. Forst.- Jagdztg. 166(7): 144–147) was fitted for radiata pine (Pinus radiata D. Don) stems in Spain by using a nonlinear mixed modelling approach. Eight candidate models (all possible expansion combinations of the three fixed parameters with random effects) were assessed, and the mixed model with three random effects performed the best according to the goodness-of-fit statistics. An evaluation data set was used to assess the performance of these models in predicting stem diameter along the bole, as well as total stem volume. Four prediction approaches were compared: one subject (tree) specific (SS) and three population specific (ordinary least squares (OLS), mean (M), and population averaged (PA)). The SS responses for a tree were estimated from a prior stem diameter measurement available for that tree, whereas OLS, M, and PA were obtained from the fixed-effects model, from the fixed parameters of mixed-effects models, and by computing mean predictions from the mixed-effects models over the distribution of random effects, respectively. Prediction errors were greater for the M and PA responses than for the OLS response, and therefore, from the prediction point of view, the use of the mixed-effects models is not recommended when an additional stem diameter measurement is not available. The mixed model with three random effects was also selected as the best model for SS estimations. Measurement of an additional stem diameter at a relative tree height of approximately 0.5 provided the best calibrations for stem diameters along the bole and total stem volume predictions. The SS approach increased the flexibility and efficiency of the selected mixed-effects model for localized predictions and thus improved the overall predictive capacity of the base model.


2007 ◽  
Vol 22 (1) ◽  
pp. 61-66 ◽  
Author(s):  
David Hibbs ◽  
Andrew Bluhm ◽  
Sean Garber

Abstract Ataper equation and a volume table are presented for red alder (Alnus rubra Bong.) trees grown in plantations. Fourteen diameter measurements from each of 234 trees were collected from nine plantations throughout the Pacific Northwest. Diameter inside bark (dib) along the stemwas fitted to a variable exponent model form. Individual tree merchantable volume was then estimated as volume inside bark by integrating the taper function from 6 in. (stump height) to the height at a 5-in. (diameter outside bark) top. Incorporating two easily measured tree variables—dbhand total tree height—provided an accurate fit. Model results and the use of an independent evaluation data set of plantation-grown trees indicated that the model presented here was a better predictor of dib in managed stands than previously published red alder taper equations. Thisequation provides reliable dib and merchantable volume predictions and is an improvement over previous red alder volume and taper equations.


2018 ◽  
pp. 76-83 ◽  
Author(s):  
R. Silwal ◽  
S. K. Baral ◽  
B. B. K. Chhetri

Volume and taper equations are used for estimating timber volume and biomass of a tree. Despite their usefulness, precise and site specific equations are still lacking for commercially important tree species in Nepal. The study was carried out at Chandak Chatiya Mahila Community Forest in Bardia district and Lumbini Collaborative Forest of Saljhandi in Rupandehi district in western Terai of Nepal. A destructive sampling method was used and selected fifteen Sal trees (Shorea robusta Gaertn. f.) from Saljhandi (site 1) and eighteen trees from Bagnaha (site 2) randomly to calibrate an individual tree volume and a stem taper function. At first, a non-linear stem taper function was calibrated using stem diameters outside bark at different heights above ground as response variable and D (diameter at breast height), H (total height), h (height of interest) as predictors. Then, effect of crown characteristics on stem taper was evaluated. As stem HCB (height to crown base) was found to affect stem taper, its usefulness in existing stem volume equation was tested. Empirical relationships between V (stem volume) as a response variable and D, H, HCB and sites in Bardia and Rupandehi districts as predictors were established using a linear mixed modeling approach. Our result showed that, instead of H, use of HCB in stem volume equation increased model prediction accuracy and reduced prediction bias. Applicability of the suggested models for predicting individual S. robusta tree volume and stem taper is discussed. Banko JanakariA Journal of Forestry Information for Nepal Special Issue No. 4, 2018, Page: 76-83


CERNE ◽  
2016 ◽  
Vol 22 (3) ◽  
pp. 249-260 ◽  
Author(s):  
Hassan Camil David ◽  
Rodrigo Otávio Veiga Miranda ◽  
John Welker ◽  
Luan Demarco Fiorentin ◽  
Ângelo Augusto Ebling ◽  
...  

ABSTRACT The aim of this paper was to evaluate different criteria for stem measurement sampling and to identify the criterion with best performance for developing individual tree volume equations. Data were collected in eucalyptus stands 58 to 65 months old. Schumacher-Hall model was applied using five sampling criteria with nine variations (45 in total): 1) number of trees per diameter class, being (a) fixed number, (b) proportional to the diameter class of the sample, or (c) proportional to the standard deviation of the sample; and 2) the width of the diameter class, which ranged from 1.0 up to 5.0 cm. We used the equations generated from each of the five sampling criteria to estimate stem volume of trees reserved for validation. This allowed us to obtain standard errors of estimates from this data-set. In addition, residuals of volume estimates were examined by means of statistical tests of bias, autocorrelation and heteroscedasticity. Better performances of volume equations occurred when smaller diameter class widths were used, i.e., when the sample size increased. There was no clear trend in increasing/decreasing residual autocorrelation and/or heteroscedasticity. Both methods of sampling proportional to the frequency of diameter class had the best performances, inclusive using only 36 trees. The ones where choice of trees was proportional to the standard deviation had the worst. In conclusion, the selection proportional to the frequency of the diameter class, under the condition that at least two trees per class are sampled, provides models statistically better than all the other criteria.


2021 ◽  
Vol 13 (4) ◽  
pp. 606
Author(s):  
Tee-Ann Teo ◽  
Yu-Ju Fu

The spatiotemporal fusion technique has the advantages of generating time-series images with high-spatial and high-temporal resolution from coarse-resolution to fine-resolution images. A hybrid fusion method that integrates image blending (i.e., spatial and temporal adaptive reflectance fusion model, STARFM) and super-resolution (i.e., very deep super resolution, VDSR) techniques for the spatiotemporal fusion of 8 m Formosat-2 and 30 m Landsat-8 satellite images is proposed. Two different fusion approaches, namely Blend-then-Super-Resolution and Super-Resolution (SR)-then-Blend, were developed to improve the results of spatiotemporal fusion. The SR-then-Blend approach performs SR before image blending. The SR refines the image resampling stage on generating the same pixel-size of coarse- and fine-resolution images. The Blend-then-SR approach is aimed at refining the spatial details after image blending. Several quality indices were used to analyze the quality of the different fusion approaches. Experimental results showed that the performance of the hybrid method is slightly better than the traditional approach. Images obtained using SR-then-Blend are more similar to the real observed images compared with images acquired using Blend-then-SR. The overall mean bias of SR-then-Blend was 4% lower than Blend-then-SR, and nearly 3% improvement for overall standard deviation in SR-B. The VDSR technique reduces the systematic deviation in spectral band between Formosat-2 and Landsat-8 satellite images. The integration of STARFM and the VDSR model is useful for improving the quality of spatiotemporal fusion.


Trials ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Zhuoran Kuang ◽  
◽  
Xiaoyan Li ◽  
Jianxiong Cai ◽  
Yaolong Chen ◽  
...  

Abstract Objective To assess the registration quality of traditional Chinese medicine (TCM) clinical trials for COVID-19, H1N1, and SARS. Method We searched for clinical trial registrations of TCM in the WHO International Clinical Trials Registry Platform (ICTRP) and Chinese Clinical Trial Registry (ChiCTR) on April 30, 2020. The registration quality assessment is based on the WHO Trial Registration Data Set (Version 1.3.1) and extra items for TCM information, including TCM background, theoretical origin, specific diagnosis criteria, description of intervention, and outcomes. Results A total of 136 records were examined, including 129 severe acute respiratory syndrome coronavirus 2 (COVID-19) and 7 H1N1 influenza (H1N1) patients. The deficiencies in the registration of TCM clinical trials (CTs) mainly focus on a low percentage reporting detailed information about interventions (46.6%), primary outcome(s) (37.7%), and key secondary outcome(s) (18.4%) and a lack of summary result (0%). For the TCM items, none of the clinical trial registrations reported the TCM background and rationale; only 6.6% provided the TCM diagnosis criteria or a description of the TCM intervention; and 27.9% provided TCM outcome(s). Conclusion Overall, although the number of registrations of TCM CTs increased, the registration quality was low. The registration quality of TCM CTs should be improved by more detailed reporting of interventions and outcomes, TCM-specific information, and sharing of the result data.


Author(s):  
Raul E. Avelar ◽  
Karen Dixon ◽  
Boniphace Kutela ◽  
Sam Klump ◽  
Beth Wemple ◽  
...  

The calibration of safety performance functions (SPFs) is a mechanism included in the Highway Safety Manual (HSM) to adjust SPFs in the HSM for use in intended jurisdictions. Critically, the quality of the calibration procedure must be assessed before using the calibrated SPFs. Multiple resources to aid practitioners in calibrating SPFs have been developed in the years following the publication of the HSM 1st edition. Similarly, the literature suggests multiple ways to assess the goodness-of-fit (GOF) of a calibrated SPF to a data set from a given jurisdiction. This paper uses the calibration results of multiple intersection SPFs to a large Mississippi safety database to examine the relations between multiple GOF metrics. The goal is to develop a sensible single index that leverages the joint information from multiple GOF metrics to assess overall quality of calibration. A factor analysis applied to the calibration results revealed three underlying factors explaining 76% of the variability in the data. From these results, the authors developed an index and performed a sensitivity analysis. The key metrics were found to be, in descending order: the deviation of the cumulative residual (CURE) plot from the 95% confidence area, the mean absolute deviation, the modified R-squared, and the value of the calibration factor. This paper also presents comparisons between the index and alternative scoring strategies, as well as an effort to verify the results using synthetic data. The developed index is recommended to comprehensively assess the quality of the calibrated intersection SPFs.


Author(s):  
Hospice A. Akpo ◽  
Gilbert Atindogbé ◽  
Maxwell C. Obiakara ◽  
Arios B. Adjinanoukon ◽  
Madaï Gbedolo ◽  
...  

AbstractRecent applications of digital photogrammetry in forestry have highlighted its utility as a viable mensuration technique. However, in tropical regions little research has been done on the accuracy of this approach for stem volume calculation. In this study, the performance of Structure from Motion photogrammetry for estimating individual tree stem volume in relation to traditional approaches was evaluated. We selected 30 trees from five savanna species growing at the periphery of the W National Park in northern Benin and measured their circumferences at different heights using traditional tape and clinometer. Stem volumes of sample trees were estimated from the measured circumferences using nine volumetric formulae for solids of revolution, including cylinder, cone, paraboloid, neiloid and their respective fustrums. Each tree was photographed and stem volume determined using a taper function derived from tri-dimensional stem models. This reference volume was compared with the results of formulaic estimations. Tree stem profiles were further decomposed into different portions, approximately corresponding to the stump, butt logs and logs, and the suitability of each solid of revolution was assessed for simulating the resulting shapes. Stem volumes calculated using the fustrums of paraboloid and neiloid formulae were the closest to reference volumes with a bias and root mean square error of 8.0% and 24.4%, respectively. Stems closely resembled fustrums of a paraboloid and a neiloid. Individual stem portions assumed different solids as follows: fustrums of paraboloid and neiloid were more prevalent from the stump to breast height, while a paraboloid closely matched stem shapes beyond this point. Therefore, a more accurate stem volumetric estimate was attained when stems were considered as a composite of at least three geometric solids.


2021 ◽  
Vol 10 (7) ◽  
pp. 436
Author(s):  
Amerah Alghanim ◽  
Musfira Jilani ◽  
Michela Bertolotto ◽  
Gavin McArdle

Volunteered Geographic Information (VGI) is often collected by non-expert users. This raises concerns about the quality and veracity of such data. There has been much effort to understand and quantify the quality of VGI. Extrinsic measures which compare VGI to authoritative data sources such as National Mapping Agencies are common but the cost and slow update frequency of such data hinder the task. On the other hand, intrinsic measures which compare the data to heuristics or models built from the VGI data are becoming increasingly popular. Supervised machine learning techniques are particularly suitable for intrinsic measures of quality where they can infer and predict the properties of spatial data. In this article we are interested in assessing the quality of semantic information, such as the road type, associated with data in OpenStreetMap (OSM). We have developed a machine learning approach which utilises new intrinsic input features collected from the VGI dataset. Specifically, using our proposed novel approach we obtained an average classification accuracy of 84.12%. This result outperforms existing techniques on the same semantic inference task. The trustworthiness of the data used for developing and training machine learning models is important. To address this issue we have also developed a new measure for this using direct and indirect characteristics of OSM data such as its edit history along with an assessment of the users who contributed the data. An evaluation of the impact of data determined to be trustworthy within the machine learning model shows that the trusted data collected with the new approach improves the prediction accuracy of our machine learning technique. Specifically, our results demonstrate that the classification accuracy of our developed model is 87.75% when applied to a trusted dataset and 57.98% when applied to an untrusted dataset. Consequently, such results can be used to assess the quality of OSM and suggest improvements to the data set.


Sign in / Sign up

Export Citation Format

Share Document