scholarly journals Spatiotemporal Fusion of Formosat-2 and Landsat-8 Satellite Images: A Comparison of “Super Resolution-Then-Blend” and “Blend-Then-Super Resolution” Approaches

2021 ◽  
Vol 13 (4) ◽  
pp. 606
Author(s):  
Tee-Ann Teo ◽  
Yu-Ju Fu

The spatiotemporal fusion technique has the advantages of generating time-series images with high-spatial and high-temporal resolution from coarse-resolution to fine-resolution images. A hybrid fusion method that integrates image blending (i.e., spatial and temporal adaptive reflectance fusion model, STARFM) and super-resolution (i.e., very deep super resolution, VDSR) techniques for the spatiotemporal fusion of 8 m Formosat-2 and 30 m Landsat-8 satellite images is proposed. Two different fusion approaches, namely Blend-then-Super-Resolution and Super-Resolution (SR)-then-Blend, were developed to improve the results of spatiotemporal fusion. The SR-then-Blend approach performs SR before image blending. The SR refines the image resampling stage on generating the same pixel-size of coarse- and fine-resolution images. The Blend-then-SR approach is aimed at refining the spatial details after image blending. Several quality indices were used to analyze the quality of the different fusion approaches. Experimental results showed that the performance of the hybrid method is slightly better than the traditional approach. Images obtained using SR-then-Blend are more similar to the real observed images compared with images acquired using Blend-then-SR. The overall mean bias of SR-then-Blend was 4% lower than Blend-then-SR, and nearly 3% improvement for overall standard deviation in SR-B. The VDSR technique reduces the systematic deviation in spectral band between Formosat-2 and Landsat-8 satellite images. The integration of STARFM and the VDSR model is useful for improving the quality of spatiotemporal fusion.

2019 ◽  
Vol 11 (18) ◽  
pp. 2077 ◽  
Author(s):  
Fung ◽  
Wong ◽  
Chan

Spatio-temporal data fusion refers to the technique of combining high temporal resolution from coarse satellite images and high spatial resolution from fine satellite images. However, data availability remains a major limitation in algorithm development. Existing spatio-temporal data fusion algorithms require at least one known image pair between the fine and coarse resolution image. However, data which come from two different satellite platforms do not necessarily have an overlap in their overpass times, hence restricting the application of spatio-temporal data fusion. In this paper, a new algorithm named Hopfield Neural Network SPatio-tempOral daTa fusion model (HNN-SPOT) is developed by utilizing the optimization concept in the Hopfield neural network (HNN) for spatio-temporal image fusion. The algorithm derives a synthesized fine resolution image from a coarse spatial resolution satellite image (similar to downscaling), with the use of one fine resolution image taken on an arbitrary date and one coarse image taken on a predicted date. The HNN-SPOT particularly addresses the problem when the fine resolution and coarse resolution images are acquired from different satellite overpass times over the same geographic extent. Both simulated datasets and real datasets over Hong Kong and Australia have been used in the evaluation of HNN-SPOT. Results showed that HNN-SPOT was comparable with an existing fusion algorithm, the spatial and temporal adaptive reflectance fusion model (STARFM). HNN-SPOT assumes consistent spatial structure for the target area between the date of data acquisition and the prediction date. Therefore, it is more applicable to geographical areas with little or no land cover change. It is shown that HNN-SPOT can produce accurate fusion results with >90% of correlation coefficient over consistent land covers. For areas that have undergone land cover changes, HNN-SPOT can still produce a prediction about the outlines and the tone of the features, if they are large enough to be recorded in the coarse resolution image at the prediction date. HNN-SPOT provides a relatively new approach in spatio-temporal data fusion, and further improvements can be made by modifying or adding new goals and constraints in its HNN architecture. Owing to its lower demand for data prerequisites, HNN-SPOT is expected to increase the applicability of fine-scale applications in remote sensing, such as environmental modeling and monitoring.


2021 ◽  
Vol 13 (2) ◽  
pp. 266
Author(s):  
Yiting Wang ◽  
Donghui Xie ◽  
Yinggang Zhan ◽  
Huan Li ◽  
Guangjian Yan ◽  
...  

Despite its wide applications, the spatiotemporal fusion of coarse- and fine-resolution satellite images is limited primarily to the availability of clear-sky fine-resolution images, which are commonly scarce due to unfavorable weather, and such a limitation might cause errors in spatiotemporal fusion. Thus, the effective use of limited fine-resolution images, while critical, remains challenging. To address this issue, in this paper we propose a new phenological similarity strategy (PSS) to select the optimal combination of image pairs for a prediction date. The PSS considers the temporal proximity and phenological similarity between the base and prediction images and computes a weight for identifying the optimal combination of image pairs. Using the PSS, we further evaluate the influence of input data on the fusion accuracy by varying the number and temporal distribution of input images. The results show that the PSS (mean R = 0.827 and 0.760) outperforms the nearest date (mean R = 0.786 and 0.742) and highest correlation (mean R = 0.821 and 0.727) strategies in both the enhanced spatial and temporal adaptive reflectance fusion model (ESTARFM) and the linear mixing growth model (LMGM), respectively, for fusing Landsat 8 OLI and MODIS NDVI datasets. Furthermore, base images adequately covering different growth stages yield better predictability than simply increasing the number of base images.


2020 ◽  
Vol 13 (1) ◽  
pp. 36
Author(s):  
Kornelia Anna Wójcik-Długoborska ◽  
Robert Józef Bialik

The phenomenon of shadows due to glaciers is investigated in Antarctica. The observed shadow effect disrupts analyses conducted by remote sensing and is a challenge in the assessment of sediment meltwater plumes in polar marine environments. A DJI Inspire 2 drone equipped with a Zenmuse x5s camera was used to generate a digital surface model (DSM) of 6 King George Island glaciers: Ecology, Dera, Zalewski, Ladies, Krak, and Vieville. On this basis, shaded areas of coves near glaciers were traced. For the first time, spectral characteristics of shaded meltwater were observed with the simultaneous use of a Sequoia+ spectral camera mounted on a Parrot Bluegrass drone and in Landsat 8 satellite images. In total, 44 drone flights were made, and 399 satellite images were analyzed. Among them, four drone spectral images and four satellite images were selected, meeting the condition of a visible shadow. For homogeneous waters (deep, low turbidity, without ice phenomena), the spectral properties tend to change during the approach to an obstacle casting a shadow especially during low shortwave downward radiation. In this case, in the shade, the amount of radiation reflected in the green spectral band decreases by 50% far from the obstacle and by 43% near the obstacle, while in near infrared (NIR), it decreases by 42% and 21%, respectively. With highly turbid, shallow water and ice phenomena, this tendency does not occur. It was found that the green spectral band had the highest contrast in the amount of reflected radiation between nonshaded and shaded areas, but due to its high sensitivity, the analysis could have been overestimated. The spectral properties of shaded meltwater differ depending on the distance from the glacier front, which is related to the saturation of the water with sediment particles. We discovered that the pixel aggregation of uniform areas caused the loss of detailed information, while pixel aggregation of nonuniform, shallow areas with ice phenomena caused changes and the loss of original information. During the aggregation of the original pixel resolution (15 cm) up to 30 m, the smallest error occurred in the area with a homogeneous water surface, while the greatest error (over 100%) was identified in the places where the water was strongly cloudy or there were ice phenomena.


2020 ◽  
Vol 12 (3) ◽  
pp. 498 ◽  
Author(s):  
Tri Wandi Januar ◽  
Tang-Huang Lin ◽  
Chih-Yuan Huang ◽  
Kuo-En Chang

Thermal infrared (TIR) satellite images are generally employed to retrieve land surface temperature (LST) data in remote sensing. LST data have been widely used in evapotranspiration (ET) estimation based on satellite observations over broad regions, as well as the surface dryness associated with vegetation index. Landsat-8 Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) can provide LST data with a 30-m spatial resolution. However, rapid changes in environmental factors, such as temperature, humidity, wind speed, and soil moisture, will affect the dynamics of ET. Therefore, ET estimation needs a high temporal resolution as well as a high spatial resolution for daily, diurnal, or even hourly analysis. A challenge with satellite observations is that higher-spatial-resolution sensors have a lower temporal resolution, and vice versa. Previous studies solved this limitation by developing a spatial and temporal adaptive reflectance fusion model (STARFM) for visible images. In this study, with the primary mechanism (thermal emission) of TIRS, surface emissivity is used in the proposed spatial and temporal adaptive emissivity fusion model (STAEFM) as a modification of the original STARFM for fusing TIR images instead of reflectance. For high a temporal resolution, the advanced Himawari imager (AHI) onboard the Himawari-8 satellite is explored. Thus, Landsat-like TIR images with a 10-minute temporal resolution can be synthesized by fusing TIR images of Himawari-8 AHI and Landsat-8 TIRS. The performance of the STAEFM to retrieve LST was compared with the STARFM and enhanced STARFM (ESTARFM) based on the similarity to the observed Landsat image and differences with air temperature. The peak signal-to-noise ratio (PSNR) value of the STAEFM image is more than 42 dB, while the values for STARFM and ESTARFM images are around 31 and 38 dB, respectively. The differences of LST and air temperature data collected from five meteorological stations are 1.53 °C to 4.93 °C, which are smaller compared with STARFM’s and ESATRFM’s. The examination of the case study showed reasonable results of hourly LST, dryness index, and ET retrieval, indicating significant potential for the proposed STAEFM to provide very-high-spatiotemporal-resolution (30 m every 10 min) TIR images for surface dryness and ET monitoring.


2021 ◽  
Vol 13 (16) ◽  
pp. 3301
Author(s):  
Yeonju Choi ◽  
Sanghyuck Han ◽  
Yongwoo Kim

In recent years, research on increasing the spatial resolution and enhancing the quality of satellite images using the deep learning-based super-resolution (SR) method has been actively conducted. In a remote sensing field, conventional SR methods required high-quality satellite images as the ground truth. However, in most cases, high-quality satellite images are difficult to acquire because many image distortions occur owing to various imaging conditions. To address this problem, we propose an adaptive image quality modification method to improve SR image quality for the KOrea Multi-Purpose Satellite-3 (KOMPSAT-3). The KOMPSAT-3 is a high performance optical satellite, which provides 0.7-m ground sampling distance (GSD) panchromatic and 2.8-m GSD multi-spectral images for various applications. We proposed an SR method with a scale factor of 2 for the panchromatic and pan-sharpened images of KOMPSAT-3. The proposed SR method presents a degradation model that generates a low-quality image for training, and a method for improving the quality of the raw satellite image. The proposed degradation model for low-resolution input image generation is based on Gaussian noise and blur kernel. In addition, top-hat and bottom-hat transformation is applied to the original satellite image to generate an enhanced satellite image with improved edge sharpness or image clarity. Using this enhanced satellite image as the ground truth, an SR network is then trained. The performance of the proposed method was evaluated by comparing it with other SR methods in multiple ways, such as edge extraction, visual inspection, qualitative analysis, and the performance of object detection. Experimental results show that the proposed SR method achieves improved reconstruction results and perceptual quality compared to conventional SR methods.


2016 ◽  
Vol 66 (1) ◽  
pp. 12
Author(s):  
John Le Marshall ◽  
Yi Xiao ◽  
David Howard ◽  
Chris Tingwell ◽  
Jeff Freeman ◽  
...  

Ten-minute interval infrared and visible satellite images, available from MTSAR-1R (Himawari-6) for a limited period over and around Australia, have been used to generate atmospheric motion vectors. These vectors—which were available every 10 minutes—have been quality controlled, error characterised and assimilated into the Australian Bureau of Meteorology's next generation operational regional forecast model as part of the new operational database. Results from this study indicate that this high temporal resolution imagery has the ability to produce high spatial and temporal density atmospheric motion vectors, and the quality of these vectors is such that they have the potential to improve numerical analysis and prognosis.


2019 ◽  
Vol 21 (2) ◽  
pp. 1310-1320
Author(s):  
Cícera Celiane Januário da Silva ◽  
Vinicius Ferreira Luna ◽  
Joyce Ferreira Gomes ◽  
Juliana Maria Oliveira Silva

O objetivo do presente trabalho é fazer uma comparação entre a temperatura de superfície e o Índice de Vegetação por Diferença Normalizada (NDVI) na microbacia do rio da Batateiras/Crato-CE em dois períodos do ano de 2017, um chuvoso (abril) e um seco (setembro) como também analisar o mapa de diferença de temperatura nesses dois referidos períodos. Foram utilizadas imagens de satélite LANDSAT 8 (banda 10) para mensuração de temperatura e a banda 4 e 5 para geração do NDVI. As análises demonstram que no mês de abril a temperatura da superfície variou aproximadamente entre 23.2ºC e 31.06ºC, enquanto no mês correspondente a setembro, os valores variaram de 25°C e 40.5°C, sendo que as maiores temperaturas foram encontradas em locais com baixa densidade de vegetação, de acordo com a carta de NDVI desses dois meses. A maior diferença de temperatura desses dois meses foi de 14.2°C indicando que ocorre um aumento da temperatura proporcionado pelo período que corresponde a um dos mais secos da região, diferentemente de abril que está no período de chuvas e tem uma maior umidade, presença de vegetação e corpos d’água que amenizam a temperatura.Palavras-chave: Sensoriamento Remoto; Vegetação; Microbacia.                                                                                  ABSTRACTThe objective of the present work is to compare the surface temperature and the Normalized Difference Vegetation Index (NDVI) in the Batateiras / Crato-CE river basin in two periods of 2017, one rainy (April) and one (September) and to analyze the temperature difference map in these two periods. LANDSAT 8 (band 10) satellite images were used for temperature measurement and band 4 and 5 for NDVI generation. The analyzes show that in April the surface temperature varied approximately between 23.2ºC and 31.06ºC, while in the month corresponding to September, the values ranged from 25ºC and 40.5ºC, and the highest temperatures were found in locations with low density of vegetation, according to the NDVI letter of these two months. The highest difference in temperature for these two months was 14.2 ° C, indicating that there is an increase in temperature provided by the period that corresponds to one of the driest in the region, unlike April that is in the rainy season and has a higher humidity, presence of vegetation and water bodies that soften the temperature.Key-words: Remote sensing; Vegetation; Microbasin.RESUMENEl objetivo del presente trabajo es hacer una comparación entre la temperatura de la superficie y el Índice de Vegetación de Diferencia Normalizada (NDVI) en la cuenca Batateiras / Crato-CE en dos períodos de 2017, uno lluvioso (abril) y uno (Septiembre), así como analizar el mapa de diferencia de temperatura en estos dos períodos. Las imágenes de satélite LANDSAT 8 (banda 10) se utilizaron para la medición de temperatura y las bandas 4 y 5 para la generación de NDVI. Los análisis muestran que en abril la temperatura de la superficie varió aproximadamente entre 23.2ºC y 31.06ºC, mientras que en el mes correspondiente a septiembre, los valores oscilaron entre 25 ° C y 40.5 ° C, y las temperaturas más altas se encontraron en lugares con baja densidad de vegetación, según el gráfico NDVI de estos dos meses. La mayor diferencia de temperatura de estos dos meses fue de 14.2 ° C, lo que indica que hay un aumento en la temperatura proporcionada por el período que corresponde a uno de los más secos de la región, a diferencia de abril que está en la temporada de lluvias y tiene una mayor humedad, presencia de vegetación y cuerpos de agua que suavizan la temperatura.Palabras clave: Detección remota; vegetación; Cuenca.


2021 ◽  
Vol 66 (1) ◽  
pp. 175-187
Author(s):  
Duong Phung Thai ◽  
Son Ton

On the basis of using practical methods, satellite image processing methods, the vegetation coverage classification system of the study area, interpretation key for the study area, classification and post-classification pro cessing, this research introduces how to exploit and process multi-temporal satellite images in evaluating the changes of forest area. Landsat 4, 5 TM and Landsat 8 OLI remote sensing image data were used to evaluate the changes in the area of mangrove forests (RNM) in Ca Mau province in the periods of 1988 - 1998, 1998 - 2013, 2013 - 2018, and 1988 - 2018. The results of the image interpretation in 1988, 1998, 2013, 2018 and the overlapping of the above maps show: In the 30-year period from 1988 to 2018, the total area of mangroves in Ca Mau province was decreased by 28% compared to the beginning, from 71,093.3 ha in 1988 reduced to 51,363.5 ha in 2018, decreasing by 19,729.8 ha. The recovery speed of mangroves is 2 times lower than their disappearance speed. Specifically, from 1988 to 2018, mangroves disappeared on an area of 42,534.9 hectares and appeared on the new area of 22,805 hectares, only 12,154.5 hectares of mangroves remained unchanged. The fluctuation of mangrove area in Ca Mau province is related to the process of deforestation to dig shrimp ponds, coastal erosion, the formation of mangroves on new coastal alluvial lands and soil dunes in estuaries, as well as planting new mangroves in inefficient shrimp ponds.


Author(s):  
Khaled ELKarazle ◽  
Valliappan Raman ◽  
Patrick Then

Age estimation models can be employed in many applications, including soft biometrics, content access control, targeted advertising, and many more. However, as some facial images are taken in unrestrained conditions, the quality relegates, which results in the loss of several essential ageing features. This study investigates how introducing a new layer of data processing based on a super-resolution generative adversarial network (SRGAN) model can influence the accuracy of age estimation by enhancing the quality of both the training and testing samples. Additionally, we introduce a novel convolutional neural network (CNN) classifier to distinguish between several age classes. We train one of our classifiers on a reconstructed version of the original dataset and compare its performance with an identical classifier trained on the original version of the same dataset. Our findings reveal that the classifier which trains on the reconstructed dataset produces better classification accuracy, opening the door for more research into building data-centric machine learning systems.


Sign in / Sign up

Export Citation Format

Share Document