scholarly journals Towards a Clean and Sustainable Distributed Energy: The Potential of Integrated PEMFC-CHP

The use of fossil fuels within the current infrastructure for domestic energy supply is one of the main causes of anthropogenic emissions. The mitigation options to meet the ambitious carbon reduction targets set by the UK government are discussed in this paper, including the use of carbon capture and storage technology, clean renewable energy integration and a proposed system of integrated fuel cell combined heat and power (FC-CHP) technology. Analysis shows that the use of carbon capture and storage (CCS) technology within the current infrastructure can abate half the electricity associated CO2 emissions; however, this comes at a high cost penalty. The emissions associated with domestic heat cannot be prevented without changes in the energy infrastructure. Hydrogen powered fuel cells can provide clean energy at a range of scales and high efficiencies, especially when employed with a CHP system. However, production of CO2 free hydrogen is essential for fuel cell technology to contribute substantially to a low carbon economy globally. In this work three methods were investigated for small scale distributed hydrogen production, namely steam methane reforming, water electrolysis and cold plasma jet. The criteria used for comparisons include the associated CO2 emissions and the cost of energy production. Cold plasma jet decomposition of methane shows a high potential when combined with integrated FC-CHP technology for economically viable and CO2 free generation of energy, especially in comparison to water electrolysis. Including the value of the solid carbon product makes the plasma system most attractive economically.

2020 ◽  
Vol 10 (4) ◽  
pp. 1362
Author(s):  
Shuhn-Shyurng Hou ◽  
Chiao-Yu Chiang ◽  
Ta-Hui Lin

Oxy-fuel combustion is an effective technology for carbon capture and storage (CCS). Oxy-combustion for coal-fired power stations is a promising technology by which to diminish CO2 emissions. Unfortunately, little attention has been paid to the oxy-combustion characteristics affected by the combustion atmosphere. This paper is aimed at investigating the oxy-fuel combustion characteristics of Australian coal in a 0.3 MWth furnace. In particular, the influences of various oxygen flow rates and recirculated flue gas (RFG) on heating performance and pollutant emissions are examined in O2/RFG environments. The results show that with increases in the secondary RFG flow rate, the temperatures in the radiative and convective sections decrease and increase, respectively. At a lower oxygen flow rate, burning Australian coal emits lower residual oxygen and NO concentrations. In the flue gas, a high CO2 concentration of up to 94.8% can be achieved. Compared to air combustion, NO emissions are dramatically reduced up to 74% for Australian coal under oxy-combustion. Note that the high CO2 concentrations in the flue gas under oxy-coal combustions suggest great potential for reducing CO2 emissions through carbon capture and storage.


Energies ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2592 ◽  
Author(s):  
Haibing Liu ◽  
Serhat Yüksel ◽  
Hasan Dinçer

This study focuses on carbon capture and distribution technology, which is a new approach to the solution of this problem. In order to use this technology more effectively, six significant criteria are defined by considering the essentials of the international Loss Control Institute and the supported literature. Moreover, the analytic network process (ANP) is applied for measuring the relative importance of each factor. The findings demonstrate that organizational factor has the greatest importance, whereas market factor is the weakest element. In addition, the education of the personnel is the most important criterion for low-cost industrial carbon dioxide capture and separation technologies. In this context, it is seen that companies need competent personnel in order to reduce the costs of these products. There are two types of strategies that companies can develop to achieve this goal. Firstly, it would be appropriate for companies to provide their staff with the necessary training on carbon capture and storage technologies. The second most important strategy is for the new personnel to be employed in the company. When choosing new employees, it is necessary to measure whether they have sufficient knowledge about this technology. These strategies will contribute to lower costs when developing products for carbon capture and storage technology.


2006 ◽  
Vol 46 (1) ◽  
pp. 435
Author(s):  
B. Hooper ◽  
B. Koppe ◽  
L. Murray

The Latrobe Valley in Victoria’s Gippsland Basin is the location of one of Australia’s most important energy resources—extremely thick, shallow brown coal seams constituting total useable reserves of more than 50,000 million tonnes. Brown coal has a higher moisture content than black coal and generates more CO2 emissions per unit of useful energy when combusted. Consequently, while the Latrobe Valley’s power stations provide Australia’s lowest- cost bulk electricity, they are also responsible for over 60 million tonnes of CO2 emissions per year—over half of the Victorian total. In an increasingly carbon constrained world the ongoing development of the Latrobe Valley brown coal resource is likely to require a drastic reduction in the CO2 emissions from new coal use projects—and carbon capture and storage (CCS) has the potential to meet such deep cuts. The offshore Gippsland Basin, the site of major producing oil and gas fields, has the essential geological characteristics to provide a high-volume, low-cost site for CCS. The importance of this potential to assist the continuing use of the nation’s lowest-cost energy source prompted the Australian Government to fund the Latrobe Valley CO2 Storage Assessment (LVCSA).The LVCSA proposal was initiated by Monash Energy (formerly APEL, and now a 100% subsidiary of Anglo American)—the proponent of a major brown coal-to-liquids plant in the Latrobe Valley. Monash Energy’s plans for the 60,000 BBL per day plant include CCS to store about 13 million tonnes of CO2 per year. The LVCSA, undertaken for Monash Energy by the Cooperative Research Centre for Greenhouse Gas Technologies (CO2CRC), provides a medium to high-level technical and economic characterisation of the volume and cost potential for secure geosequestration of CO2 produced by the use of Latrobe Valley brown coal (Hooper et al, 2005a). The assessment’s scope includes consideration of the interaction between CO2 injection and oil and gas production, and its findings have been publicly released for use by CCS proponents, oil and gas producers and all other interested parties as an executive summary, (Hooper et al, 2005b), a fact sheet (Hooper et al, 2005c) and a presentation (Hooper et al, 2005d)).The LVCSA identifies the key issues and challenges for implementing CCS in the Latrobe Valley and provides a reference framework for the engagement of stakeholders. In effect the LVCSA constitutes a pre-feasibility study for the implementation of geosequestration in support of the continuing development of Victoria’s brown coal resources.The LVCSA findings indicate that the Gippsland Basin has sufficient capacity to safely and securely store large volumes of CO2 and may provide a viable means of substantially reducing greenhouse gas emissions from coal-fired power plants and other projects using brown coal in the Latrobe Valley. The assessment also indicates that CO2 injection could well be designed to avoid any adverse impact on adjacent oil and gas production, so that CO2 injection can begin near fields that have not yet come to the end of their productive lives. However, CCS proposals involving adjacent injection and production will require more detailed risk management strategies and continuing cooperation between prospective injectors and existing producers.


Significance The extent of their preparedness reflects a combination of willingness and ability. Willingness is evident in government policy and in the public's environmental consciousness and support for government targets and policies. Ability stems from wealth, both public and private, industrial expertise and the capacity to innovate. Impacts North European countries are likely to take a lead in hydrogen and carbon capture and storage technologies. Lower-income European countries will struggle to raise capital to invest in electricity transmission. Those countries able to develop deployable clean energy technologies will be better placed to offset the costs of transition.


2020 ◽  
pp. 100608
Author(s):  
Congbin Xu ◽  
Jingjing Yang ◽  
Li He ◽  
Wenxia Wei ◽  
Yong Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document