COMMERCIAL AND TECHNICAL ISSUES FOR LARGE-SCALE CARBON CAPTURE AND STORAGE PROJECTS—A GIPPSLAND BASIN STUDY

2006 ◽  
Vol 46 (1) ◽  
pp. 435
Author(s):  
B. Hooper ◽  
B. Koppe ◽  
L. Murray

The Latrobe Valley in Victoria’s Gippsland Basin is the location of one of Australia’s most important energy resources—extremely thick, shallow brown coal seams constituting total useable reserves of more than 50,000 million tonnes. Brown coal has a higher moisture content than black coal and generates more CO2 emissions per unit of useful energy when combusted. Consequently, while the Latrobe Valley’s power stations provide Australia’s lowest- cost bulk electricity, they are also responsible for over 60 million tonnes of CO2 emissions per year—over half of the Victorian total. In an increasingly carbon constrained world the ongoing development of the Latrobe Valley brown coal resource is likely to require a drastic reduction in the CO2 emissions from new coal use projects—and carbon capture and storage (CCS) has the potential to meet such deep cuts. The offshore Gippsland Basin, the site of major producing oil and gas fields, has the essential geological characteristics to provide a high-volume, low-cost site for CCS. The importance of this potential to assist the continuing use of the nation’s lowest-cost energy source prompted the Australian Government to fund the Latrobe Valley CO2 Storage Assessment (LVCSA).The LVCSA proposal was initiated by Monash Energy (formerly APEL, and now a 100% subsidiary of Anglo American)—the proponent of a major brown coal-to-liquids plant in the Latrobe Valley. Monash Energy’s plans for the 60,000 BBL per day plant include CCS to store about 13 million tonnes of CO2 per year. The LVCSA, undertaken for Monash Energy by the Cooperative Research Centre for Greenhouse Gas Technologies (CO2CRC), provides a medium to high-level technical and economic characterisation of the volume and cost potential for secure geosequestration of CO2 produced by the use of Latrobe Valley brown coal (Hooper et al, 2005a). The assessment’s scope includes consideration of the interaction between CO2 injection and oil and gas production, and its findings have been publicly released for use by CCS proponents, oil and gas producers and all other interested parties as an executive summary, (Hooper et al, 2005b), a fact sheet (Hooper et al, 2005c) and a presentation (Hooper et al, 2005d)).The LVCSA identifies the key issues and challenges for implementing CCS in the Latrobe Valley and provides a reference framework for the engagement of stakeholders. In effect the LVCSA constitutes a pre-feasibility study for the implementation of geosequestration in support of the continuing development of Victoria’s brown coal resources.The LVCSA findings indicate that the Gippsland Basin has sufficient capacity to safely and securely store large volumes of CO2 and may provide a viable means of substantially reducing greenhouse gas emissions from coal-fired power plants and other projects using brown coal in the Latrobe Valley. The assessment also indicates that CO2 injection could well be designed to avoid any adverse impact on adjacent oil and gas production, so that CO2 injection can begin near fields that have not yet come to the end of their productive lives. However, CCS proposals involving adjacent injection and production will require more detailed risk management strategies and continuing cooperation between prospective injectors and existing producers.

2018 ◽  
Vol 12 (1) ◽  
pp. 173
Author(s):  
Ade Nurisman ◽  
Retno Gumilang Dewi ◽  
Ucok W.R. Siagian

Diffusion and matrix adsorption simulations in enhanced coalbed methane process. Carbon capture and storage (CCS) can be considered as one of climate change mitigation efforts, through capturing and injecting of CO2 in underground formations for reducing CO2 emissions. CO2 injection in coalbed methane (CBM) reservoir has potentially attracted for reducing CO2 emissions and enhancing coalbed methane (ECBM) recovery. Diffusion and sorption are phenomenon of gas in the matrix on CO2 injection in CBM reservoir. The objectives of the research are focused on understanding of diffusion and sorption of gas in the coal matrix with mathematical model and estimating of CO2 storage in coalbed and CH4 recovery. In this research, mathematical model is developed to describe the mechanism in the matrix on ECBM process. Mathematical model, which have been valid, is simulated in various variables, i.e. macroprosity (0.001, 0.005, and 0,01), pressure (1, 3, and 6 MPa), temperature (305, 423, and 573 K), and initial fraction of CO2 (0.05, 0.1, 0.3, and 0.5). The results of this research show that preferential sequestration of CO2 and preferential recovery of CH4 in the surface of micropore on macroporosity 0.001, pressure 1 MPa, temperature 305 K, and inital fraction CO2 0,5 conditions are 0.9936 and 0.0064.Keywords: carbon capture and storage (CCS), coalbed methane (CBM), ECBM, diffusion, adsorption Abstrak Carbon capture and storage (CCS) dapat dipertimbangkan sebagai salah satu upaya mitigasi perubahan iklim, yaitu dengan menangkap CO2 dan menginjeksikannya ke dalam formasi bawah permukaan. Injeksi CO2 pada lapangan coalbed methane (CBM) berpotensi mengurangi emisi CO2 dan meningkatkan produksi CBM (ECBM). Pada proses injeksi CO2 di lapangan CBM, fenomena yang terjadi di dalam matriks lapisan batubara (coalbed) adalah difusi dan adsorpsi. Penelitian ini bertujuan memahami fenomena difusi dan adsorpsi pada proses injeksi CO2 untuk ECBM melalui model matematika, dan memperkirakan potensi penyimpanan CO2 di dalam lapangan CBM dan potensi recovery CH4. Pada penelitian dilakukan pengembangan model matematika untuk menjelaskan fenomena di dalam matriks pada proses ECBM. Model matematika, yang telah valid, disimulasikan dengan memvariasikan beberapa variabel, yaitu makroporositas (0,001, 0,005, dan 0,01), tekanan (1, 3, dan 6 MPa), suhu (305, 423, dan 573 K), dan fraksi CO2 awal (0,05, 0,1, 0,3, dan 0,5). Hasil penelitian menunjukkan pada makroporositas 0,001, tekanan 1 Pa, suhu 305 K, dan fraksi CO2 awal 0,5, fraksi CO2 yang teradsorpsi pada permukaan mikropori bernilai 0,9936 dan sisa fraksi CH4 yang teradsorpsi pada permukaan mikropori bernilai 0,0064. Kata kunci: carbon capture and storage (CCS), coalbed methane (CBM), ECBM, difusi, adsorpsi


2019 ◽  
Vol 38 (4) ◽  
pp. 733-750
Author(s):  
Sébastien Chailleux

Analyzing the case of France, this article aims to explain how the development of enhanced oil recovery techniques over the last decade contributed to politicizing the subsurface, that is putting underground resources at the center of social unrest and political debates. France faced a decline of its oil and gas activity in the 1990s, followed by a renewal with subsurface activity in the late 2000s using enhanced oil recovery techniques. An industrial demonstrator for carbon capture and storage was developed between 2010 and 2013 , while projects targeting unconventional oil and gas were pushed forward between 2008 and 2011 before eventually being canceled. We analyze how the credibility, legitimacy, and governance of those techniques were developed and how conflicts made the role of the subsurface for energy transition the target of political choices. The level of political and industrial support and social protest played a key role in building project legitimacy, while the types of narratives and their credibility determined the distinct trajectories of hydraulic fracturing and carbon capture and storage in France. The conflicts over enhanced oil recovery techniques are also explained through the critical assessment of the governance framework that tends to exclude civil society stakeholders. We suggest that these conflicts illustrated a new type of politicization of the subsurface by merging geostrategic concerns with social claims about governance, ecological demands about pollution, and linking local preoccupations to global climate change.


2020 ◽  
Vol 8 ◽  
Author(s):  
Yuji Sano ◽  
Takanori Kagoshima ◽  
Naoto Takahata ◽  
Kotaro Shirai ◽  
Jin-Oh Park ◽  
...  

Carbon capture and storage (CCS) is considered a key technology for reducing CO2 emissions into the atmosphere. Nonetheless, there are concerns that if injected CO2 migrates in the crust, it may trigger slip of pre-existing faults. In order to test if this is the case, covariations of carbon, hydrogen, and oxygen isotopes of groundwater measured from Uenae well, southern Hokkaido, Japan are reported. This well is located 13 km away from the injection point of the Tomakomai CCS project and 21 km from the epicenter of September 6th, 2018 Hokkaido Eastern Iburi earthquake (M 6.7). Carbon isotope composition was constant from June 2015 to February 2018, and decreased significantly from April 2018 to November 2019, while total dissolved inorganic carbon (TDIC) content showed a corresponding increase. A decrease in radiocarbon and δ13C values suggests aquifer contamination by anthropogenic carbon, which could possibly be attributable to CCS-injected CO2. If such is the case, the CO2 enriched fluid may have initially migrated through permeable channels, blocking the fluid flow from the source region, increasing pore pressure in the focal region and triggering the natural earthquake where the brittle crust is already critically stressed.


2021 ◽  
Author(s):  
Margot Hurlbert

Abstract This article reports research results from two day deliberative focus groups in three Saskatchewan communities addressing power production planning, in the context of climate change and sustainability. Mixed methods included pre and post-focus group surveys, coding and analysis of discussions, and the creation by each focus group of a strategy for sustainable power production in the future. Results of comparative case study analysis provide strong support for renewables and illustrate place based differences.All communities strongly supported wind, solar and hydroelectricity. Estevan, located in the south of the province in proximity to coal, oil and gas production and coal power generating plants supported coal, and coal with carbon capture and storage (CCS). Saskatoon (situate in the middle of the province) and Regina (the center of government and between the other two) stressed the importance of engaging the public in decision making, education, providing information, and the importance that all costs, risk, benefits across the entire lifespan of the power production source be considered. In contrast, Estevan was concerned about the cost implications of power production source choice across the entire socio-economic system, including the social cost of job loss on the welfare system. Public participation in decision making in Estevan was not a priority. The reflexivity of the focus groups in Estevan brought closer together divergent views and increased support for coal and coal with CCS.


2020 ◽  
Vol 10 (4) ◽  
pp. 1362
Author(s):  
Shuhn-Shyurng Hou ◽  
Chiao-Yu Chiang ◽  
Ta-Hui Lin

Oxy-fuel combustion is an effective technology for carbon capture and storage (CCS). Oxy-combustion for coal-fired power stations is a promising technology by which to diminish CO2 emissions. Unfortunately, little attention has been paid to the oxy-combustion characteristics affected by the combustion atmosphere. This paper is aimed at investigating the oxy-fuel combustion characteristics of Australian coal in a 0.3 MWth furnace. In particular, the influences of various oxygen flow rates and recirculated flue gas (RFG) on heating performance and pollutant emissions are examined in O2/RFG environments. The results show that with increases in the secondary RFG flow rate, the temperatures in the radiative and convective sections decrease and increase, respectively. At a lower oxygen flow rate, burning Australian coal emits lower residual oxygen and NO concentrations. In the flue gas, a high CO2 concentration of up to 94.8% can be achieved. Compared to air combustion, NO emissions are dramatically reduced up to 74% for Australian coal under oxy-combustion. Note that the high CO2 concentrations in the flue gas under oxy-coal combustions suggest great potential for reducing CO2 emissions through carbon capture and storage.


Energies ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 4211
Author(s):  
Timofey Eltsov ◽  
Tadeusz W. Patzek

The non-corrosive, electrically resistive fiberglass casing materials may improve the economics of oil and gas field projects. At moderate temperatures (<120 °C), fiberglass casing is superior to carbon steel casing in applications that involve wet CO2 injection and/or production, such as carbon capture and storage, and CO2-based enhanced oil recovery (EOR) methods. Without a perfect protective cement shell, carbon steel casing in contact with a concentrated formation brine corrodes and the fiberglass casing is superior again. Fiberglass casing enables electromagnetic logging for exploration and reservoir monitoring, but it requires the development of new logging methods. Here we present a technique for the detection of integrity of magnetic cement behind resistive fiberglass casing. We demonstrate that an optimized induction logging tool can detect small changes in the magnetic permeability of cement through a non-conductive casing in a vertical (or horizontal) well. We determine both the integrity and solidification state of the cement-filled annulus behind the casing. Changes in magnetic permeability influence mostly the real part of the vertical component of the magnetic field. The signal amplitude is more sensitive to a change in the magnetic properties of the cement, rather than the signal phase. Our simulations showed that optimum separation between the transmitter and receiver coils ranged from 0.25 to 0.6 m, and the most suitable magnetic field frequencies varied from 0.1 to 10 kHz. A high-frequency induction probe operating at 200 MHz can measure the degree of solidification of cement. The proposed method can detect borehole cracks filled with cement, incomplete lift of cement, casing eccentricity, and other borehole inhomogeneities.


Sign in / Sign up

Export Citation Format

Share Document