Prediction of Hourly Solar Radiation in Amman-Jordan by Using Artificial Neural Networks
In this study, three Artificial Neural Network (ANN) models (Feedforward network, Elman, and Nonlinear Autoregressive Exogenous (NARX)) were used to predict hourly solar radiation in Amman, Jordan. The three models were constructed and tested by using MATLAB software. Meteorological data for the years from 2000 to 2010 were used to train the ANN while the yearly data of 2011 was used to test it. It was found that ANN technique may be used to estimate the hourly solar radiation with an excellent accuracy, and the coefficient of determination of Elman, feedforward and NARX models were found to be 0.97353, 0.97376, and 0.99017, respectively. The obtained results showed that NARX model has the best ability to predict the required solar data, while Elman and feedforward models have the lowest ability to predict it.