GASTRORETENTIVE MICROBALLOONS OF RIBOFLAVIN: FORMULATION AND EVALUATION

INDIAN DRUGS ◽  
2017 ◽  
Vol 54 (04) ◽  
pp. 47-52
Author(s):  
S. C. B Penjuri ◽  
R. Nagaraju ◽  
S. Shaik ◽  
S. Damineni ◽  
S. R. Poreddy ◽  
...  

Gastroretentive dosage forms are useful to extend release of drugs having a narrow window of absorption in the upper intestine and for drugs degraded by higher pH or for drugs with local action in the proximal part of the GI tract. In the present study, an attempt was made to prepare microballoons of riboflavin by emulsion solvent diffusion method by using HPMC and ethylcellulose in order to extend the drug release in the upper GIT, which may result in enhanced absorption and thereby improved bioavailability. The size and surface morphology of riboflavin microballoons were characterized by optical and scanning electron microscopy. FTIR and DSC studies revealed no drug excipient interaction. Average particle size of microballoons was found to be between 126.8±2.26 to 163.4±2.52 μm. Microballoons were found to be spherical in shape with smooth surface texture. Percentage yield of the microballoons was satisfactory. In vitro buoyancy of the optimized riboflavin microballoons was found to be 96.24±0.08%, indicating good floating in stomach. Cumulative amount of drug release from microballoons at the end of 12 hr was 99.78±2.78 % and followed Highuchi diffusion kinetics and super case II transport.

Author(s):  
RAHUL S. SOLUNKE ◽  
UDAY R. BORGE ◽  
KRISHNA MURTHY ◽  
MADHURI T. DESHMUKH ◽  
RAJKUMAR V. SHETE

Objective: The objective of the present study was to develop and characterize an optimal stable nanosponges of Gliclazide (GLZ) by using the emulsion solvent diffusion method and aimed to increase its bioavailability and release the drug in sustained and controlled manner. Methods: The GLZ nanosponge was prepared by emulsion solvent diffusion method using different drug-polymer ratios (1:1 to 1:5) Eudragit S100 is used as a polymer. Differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR) estimated the compatibility of GLZ with polymer. All formulations evaluated for production yield, entrapment efficiency, in vitro drug release, scanning electron microscopy (SEM) and stability studies. Results: The DSC and FTIR Studies revealed that no interaction between drug and polymer. The Production yield of all batches in the range of 73.8±0.30 to 85.6±0.32. Batch F3 showed the highest production yield, the entrapment efficiency of batch F3 70.6±0.77. The average particle size ranges from 303±2.36 to 680±2.50 nm. By the end of 10th hour F3 formulation shown highest drug release was found to be 94.40±1.12%. The release kinetics of the optimized formulation shows zero-order drug release. The stability study indicates no significant change in the in vitro dissolution profile of optimized formulation. Conclusion: The results of various evaluation parameters, revealed that GLZ nanosponges would be possible alternative delivery systems to conventional formulation to improve its bioavailability, the emulsion solvent diffusion method is best method for preparation of nanosponges and release the drug in sustained and controlled manner.


Author(s):  
Vijay R Chakote ◽  
◽  
Ms.Deepali R. Wagh ◽  
Mr. Rahul S. Waghmare ◽  
Umesh T. Jadhao ◽  
...  

Ketoconazole Nanosponges were prepared by using Hyper cross linked β-cyclodextrin method by using different concentration of cross-linker. Diphenyl carbonate was used as the cross linking polymer. Nanosponge formulations were prepared by using β-CD: cross linker ratios of 1:15, 1:10, 1:5 and 1:3.Thepreparednanosponges were evaluated for percentage yield, incorporation efficiency, particle size, drug polymer compatibility, scanning electron microscopy andin-vitrodrugrelease.SEM studies confirmed their porous structure with number of nano channels. The FTIR spectra showed stable character of Ketoconazole in mixture of polymers and revealed the absence of drug polymer interactions. DSC study revealed that drug was involved in complexation with nanosponges. The average particle size of Ketoconazole nanoparticles was found to be in the range of 78.81± 0.20 nm to336.02 ± 0.124nm.The drug release from nanosponges was found to extended upto 8hr. 82 to 92%.The nano sponges were formulated into gel using Carbopol 940Batches G1 to G4 were prepared by incorporating nanosponges equivalent to 6%w/w of ketoconazole in different polymer concentrations respectively and evaluated for Percent drug content, Viscosity study, Spreadability study, In vitro diffusion studies. Nanosponge gel G1 showed the optimum pH, viscosity, Spread ability and In vitro release. Drug diffusion from the nanosponge loaded gel formulations was show sustained rate. A sustained release topical drug delivery of Ketoconazole developed as a nanosponge loaded gel offers solubilizing matrix for the drug, served as a local depot for sustained drug release and provided a rate limiting matrix barrier for modulation of drug release.


Author(s):  
Kumar Nishchaya ◽  
Swatantra K.S. Kushwaha ◽  
Awani Kumar Rai

Background: Present malignant cancer medicines has the advancement of magnetic nanoparticles as delivery carriers to magnetically accumulate anticancer medication in malignant growth tissue. Aim: In the present investigation, a silica nanoparticles (MSNs) stacked with hydroxyurea were combined and was optimized for dependent and independent variables. Method: In this study, microporous silica nanoparticle stacked with neoplastic medication had been prepared through emulsification followed with solvent evaporation method. Prepared MSNs were optimized for dependent and independent variables. Different formulations were prepared with varying ratio of polymer, lipid and surfactant which affects drug release and kinetics of drug release pattern. The obtained MSNs were identified by FTIR, SEM, drug entrapment, in-vitro drug release, drug release kinetics study, stability testing in order to investigate the nanoparticle characteristics. Results: The percentage drug entrapment of the drug for the formulations F1, F2, F3, was found to be 27.78%, 65.52% and 48.26%. The average particle size for F2 formulation was found to be 520 nm through SEM. The cumulative drug release for the formulations F1, F2, F3 was found to be 64.17%, 71.82% and 32.68%. The formulations were found to be stable which gives controlled drug delivery for 6 hours. Conclusion: From the stability studies data it can be culminated that formulations are most stable when stored at lower temperature or in refrigerator i.e. 5˚C ± 3˚C. It can be concluded that MSN’s loaded with hydroxyurea is a promising approach towards the management of cancer due to its sustained release and less side effects.


Author(s):  
ARTI MAJUMDAR ◽  
NIDHI DUBEY ◽  
NITIN DUBEY

Objective: The aim of the present study is to develop docetaxel-loaded nano liquid crystals (NLCs) to enhanced and effective delivery of the drug to the skin cancer. Methods: NLCs bearing docetaxel were prepared by an emulsification solvent diffusion method. The formulated NLCs were characterized for average particle size, polydispersity index (PDI) Zeta potential, entrapment efficiency and in vitro drug release study. The prepared formulations were studied for it's in vitro cell line and cell uptake study. Results: It was revealed that the average size of NLCs was found 178.3±5.07, PDI was 0.189, percent entrapment efficiency was found 71.3±2.49 and Zeta potential was found-17.3±2.4. In vitro release determined by Franz diffusion cell was found 61.6±3.2% after 72 hr. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay shows that Docetaxel loaded NLCs were giving more cytotoxicity as compared to the plain drug. The cell uptake study was found enhanced uptake of fluorescein isothiocyanate (FITC) loaded NLCs in comparison to plain FITC. Docetaxel and docetaxel-loaded NLCs showed 28.3±0.3 and 39.3±1.3 growth inhibition respectively after 48h upon incubation at 0.5 µg/ml concentration (p<0.05). Conclusion: The result of the studies was concluded that NLCs can be used as impending drug delivery system which may enhance the drug uptake and maintain the drug level for longer period of time and it is potential carrier system which can be used for the treatment of skin diseases like cancer.


Author(s):  
Nilesh S. Kulkarni ◽  
Mukta A. Kulkarni ◽  
Rahul H. Khiste ◽  
Mohini C. Upadhye ◽  
Shashikant N. Dhole

Aim: The present investigation is to formulate and evaluate gastroretentive floating microspheres for sumatriptan succinate. Gastric retention is widely used approach to retain dosage form in stomach and to enhance absorption of drugs. Methods: The gastroretentive floating microspheres was prepared by two different techniques as solvent evaporation and W/O/W multiple emulsion technique. Ethyl cellulose, HPMC K4M polymer and mucilage extracted from Vigna Mungo in various proportions were used for formulation of microspheres. Combination of ethyl acetate and acetone in different proportion was used as organic phase and the microspheres were characterized for particle size, shape, morphology, percentage yield, entrapment efficiency, drug loading, In-Vitro Floating/Buoyancy study, In-vitro Floating/Buoyancy study and release kinetics. Results: The average particle size of all batches was found in the range 100 to 210 μm and the entrapment efficiency of all formulations was found in the range of 17.46 % to 59.28 %.Total floating time for Sumatriptan succinate floating microspheres was observed more than 12 h. The In-Vitro drug release study was performed for all formulations showed drug release in controlled manner. Conclusion: The particle size was increased with increased polymer concentration and it showed that polymer concentration has an impact on the entrapment efficiency. Ethyl cellulose microspheres showed more entrapment and sustained delivery of sumatriptan Succinate than microspheres prepared by combination of Ethyl cellulose: HPMC K4M and Ethyl cellulose: Vigna mungo mucilage.


2020 ◽  
Vol 10 ◽  
pp. 184798042091151 ◽  
Author(s):  
Ping Song ◽  
Wuchen Du ◽  
Wanzhen Li ◽  
Longbao Zhu ◽  
Weiwei Zhang ◽  
...  

Polymerized polypeptide nanomicelles have attracted much attention as novel drug carriers because of their good biocompatibility and degradability. To prepare doxorubicin (DOX)-loaded nanomicelles, an amphiphilic peptide, FFHFFH-KKGRGD (P12), was synthesized by solid-phase synthesis, and the physicochemical and drug-release properties, as well as the cytotoxicity of the nanomicelles, were evaluated in vitro. The P12-DOX polymer micelles were prepared by dialysis. The morphology and particle size were characterized by transmission electron microscopy and dynamic light scattering. The critical micelle concentration (CMC) of the polymer was determined by the probe method, and the drug-release characteristics of the micelles were studied by dynamic dialysis. The cytotoxicity and uptake of the P12-DOX micelles were evaluated against mouse breast cancer cells (4T1) and human umbilical vein endothelial cells. The peptide polymer micelles containing DOX were uniformly sized and had a spherical core–shell structure with an average particle size of 128.6 nm. The CMC of the polymer was low (0.0357 mg/mL). The in vitro release of DOX from the micelles is slow and is consistent with first-order kinetics. The copolymer micelles of the P12 polypeptide and DOX can be used as nanoscale spherical carriers of hydrophobic drugs and have broad applicability.


2021 ◽  
Author(s):  
Faten Eshrati Yeganeh ◽  
Amir Eshrati Yeganeh ◽  
Bahareh Farasati Far ◽  
Iman Akbarzadeh ◽  
Sameer Quazi ◽  
...  

Abstract An innovative and customized drug delivery system for in vitro cancer treatment has been developed successfully by a simple one-step method. A CoFe2O4@Methionine core-shell nanoparticle was prepared by the reflux assay, in which amino acid on the surface makes the ferrite biocompatible, enhances the chemical stability of the compound, and increases the drug loading capacity. The synthesized nanoparticles were evaluated using SEM, TEM, FTIR, and VSM, while XRD and TGA analysis verified the presence of a coating amino acid on the surface of CoFe2O4. The appearance of a new peak for C≡N in the FTIR spectrum validates the synthesis of a letrozole-loaded carrier. Both uncoated CoFe2O4 and methionine-coated CoFe2O4 nanoparticles behave super-paramagnetically at room temperature, with saturation values of 46 emu/g and 16.8 emu/g, respectively. SEM and TEM were used to characterize the morphology and size of samples, revealing that the average particle size was around 28–29 nm. The loading of Letrozole and the effect of pH (5, 7.4) on the release behavior of the carrier were studied. The result of the drug release in pH (5) was about 88% higher than pH (7.4). Also, the preparation has been evaluated for determining its cytotoxicity using MCF-7, MDA-MB-231, and MCF10A cell lines as an in vitro model, and the results of in vitro experiments showed that CoFe2O4@Methionine could significantly reduce cancer in the cell model. These results demonstrate that core-shell nanoparticles were prepared that are biocompatible and have potential use as drug delivery.


Author(s):  
Maruthi. N ◽  
Lakshmi Radhika G

Microsponges are the polymeric drug delivery systems composed of porous microspheres. They are tiny sponge like spherical particles that consists of myriad of inter-connecting voids within a non-collapsible structure with a large porous surface. The present work is to formulate and evaluate the Parecoxib Microsponge Hydrogel Sustained Release Tablet. The Microsponges of Parecoxib is prepared by Quasi-emulsion solvent diffusion method using Ethyl cellulose and Eudragit RS100 as polymers and Di-butyl phthalate as Plasticizer. And they are characterized for FTIR studies, production yield, particle size analysis, DSC and SEM. The production yield of formulations was from 77.77 to 82.75. FTIR and DSC studies are revealed that the drug and polymer are compatible with each other during preparation. The average diameter of Microsponge is ranged from 536.9 nm to 489.7. Parecoxib Microsponge hydrogel were prepared as sustained release tablets by using sustained release polymers like MCC, Magnesium stearate, Lactose and talc. Preformulation of Microsponge granules were carried out by various parameters and post formulation were carried out by In-vitro dissolution studies, hardness, friability and weight variation tests. Formulation F3 shows good results for the drug release kinetics as controlled release and F6 formulation shows good results for the in-vitro dissolution studies for sustained release. Key words: Microsponge hydrogel drug delivery, Parecoxib, Sustained drug release tablets, quasi emulsion solvent diffusion method.


2017 ◽  
Vol 9 (4) ◽  
pp. 30
Author(s):  
Vishal Yadav ◽  
Prakash Jadhav ◽  
Shailaja Dombe ◽  
Anjali Bodhe ◽  
Pranali Salunkhe

Objective: The purpose of present study aims to design novel drug delivery system containing oxiconazole nitrate microsponges and to prepare microsponge gel. Oxiconazole nitrate is an antifungal drug used in the treatment of fungal infection having a poor aqueous solubility, side effects and adverse reactions. The microsponge delivery system is unique technology for controlled release of active agents. Methods: The microsponges were prepared by quasi-emulsion solvent diffusion method by using polymer eudragit S-100 and eudragit L-100. All the formulated microsponges were subjected for various evaluation parameters such as production yield, encapsulation efficiency, particle size analysis and in vitro drug release study. The optimised microsponge formulation F3 and F9 were further formulated as gel formulation for topical delivery. Prepared gel was evaluated for physical parameters like pH, spreadability, viscosity, drug content and in vitro diffusion study and compared with the marketed formulation.Results: The Fourier transform infrared radiation measurement (FTIR) and Differential scanning colorimetry (DSC) of drug and excipient confirm compatibility. Results revealed that quasi-emulsion solvent diffusion method is a suitable technique for the preparation of microsponges as most of the formulations were discrete and spherical in shape with a good production yield of 61.44% to 80.45% and The highest drug release for F3 and F9 formulation was found to be 87.77 % and 83.24 % respectively for the 8 h. The microsponge gel formulation MGI (F3) showed the controlled release of oxiconazole nitrate for 12 h. The drug release data of optimised batch MGI (F3) were fitted into different kinetic models and showed that the drug release from gel formulation follows zero order release.Conclusion: As compared to conventional formulation, the prepared microsponge gel are expected to remain on the skin for a longer time, gradually releasing their contents over the time. Hence, oxiconazole nitrate microsponges and microsponge gel prepared in this study are promising as being more useful than conventional formulation therapy.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1795
Author(s):  
Yaling Deng ◽  
Feixue Huang ◽  
Jiewen Wang ◽  
Yumeng Zhang ◽  
Yan Zhang ◽  
...  

As the main component of Platycladus orientalis, cedrol has known germinal activity. A range of cedrol formulations have been developed to prevent hair-loss, but compliance remains key issues. In this study, we prepared cedrol nanoemulsion (CE-NE) and determined the particle size and PDI (polydispersion coefficient), investigated the hair growth activity and studied the bioavailability in vitro and in vivo. Results showed that the average particle size of CE-NE is 14.26 ± 0.16 nm, and the PDI value is 0.086 ± 0.019. In vitro drug release investigation and drug release kinetics analysis showed release profile of CE from nanoparticles demonstrates the preferred partition of CE in buffer pH 4.0, the release profile of CE-NE showed a first-order kinetics reaching around 36.7% after 6 h at 37 °C. We artificially depilated the back hair of C57BL/6 mice and compared the efficacy of a designed cedrol nanoemulsion to an existing ointment group. The hair follicles were imaged and quantified using a digital photomicrograph. The results showed that compared with the ointment, CE-NE had positive effects on hair growth, improved drug solubility. Compared with the ointment and 2% minoxidil groups, 50 mg/mL CE-NE led to more robust hair growth. Pharmacokinetics analysis showed that the AUC0–t of CE-NE was 4-fold higher than that of the ointment group, confirming that the bioavailability of the nanoemulsion was greater than that of the ointment. CE-NE also significantly reduced the hair growth time of model mice and significantly increased the growth rate of hair follicles. In conclusion, these data suggest that the nanoemulsion significantly improved the pharmacokinetic properties and hair growth effects cedrol, enhancing its efficacy in vitro and in vivo.


Sign in / Sign up

Export Citation Format

Share Document