Evaluation of different Bamboo species in Tarai region of Himalayan Foothills: Growth, Biomass, Carbon storage and soil properties

2020 ◽  
Vol 27 (1) ◽  
pp. 33-38
Author(s):  
Manmohan Singh Kanwal ◽  
◽  
Rajesh Kaushal ◽  
Salil Kumar Tewari ◽  
Ratan Lal Banik ◽  
...  

Majority of the bamboo production in Northern India is accounted from forests where productivity is very low. Efforts are therefore required for enhancing the productivity of bamboos by undertaking organized cultivation outside the forest areas. The present study was undertaken for screening eight different bamboo species viz. Bambusa balcooa, B. bambos, B. nutans, B. tulda, B. vulgaris, Dendrocalamus asper, D. hamiltonii, D. strictus in terms of growth behaviour, biomass production, carbon storage potential and soil health. After six years of plantation, maximum clump height (10.67 m) and clump girth (5.93 m) was observed for B. nutans whereas minimum clump height and girth was observed for D. asper. Highest culm diameter was observed in B. vulgaris (6.23 cm). Total above ground biomass and carbon stock were maximum for D. hamiltonii (144.5 t ha-1 and 64.63 t ha-1 respectively) whereas minimum above ground biomass (14.34 t ha-1) and carbon stock (6.39 t ha-1) were accumulated by D. asper. D. hamiltonii was found to mitigate highest 237.2 t ha-1 CO2. Oxygen released from different species ranged from 17.1-172.6 t ha–1 during the six year of study. Soil health was significantly improved under all the bamboo species as compared to control. Among all bamboo species, D. hamiltonii was better species for its effect on soil health.

2020 ◽  
Author(s):  
Sophie Drexler ◽  
Axel Don

<p>The establishment of hedgerows as traditional form of agroforestry in Europe is a promising strategy to promote carbon sinks in the context of climate change mitigation. However, only few studies quantified the potential of hedgerows to sequester and store carbon. We therefore conducted a meta-analysis to gain a quantitative overview about the carbon storage in the above- and below-ground biomass and soils of hedgerows.</p><p>Soil organic carbon (SOC) data of hedgerows and adjacent agricultural fields of nine studies with 83 hedgerow sites was compiled. On average, the establishment of hedgerows on cropland increased SOC by 32%. No significant differences were found between the SOC storage of hedgerows and that of grassland. The literature survey on the biomass carbon stocks of hedgerows resulted in 23 sampled hedgerows, which were supplemented by own biomass data of 49 hedgerows from northern Germany. Biomass stocks increased with time since last coppicing and hedgerow height. The mean (± SD) above-ground biomass carbon stock of the analysed hedgerows was 48 ± 29 Mg C ha<sup>-1</sup>. Below-ground biomass values seemed mostly underestimated, as they were calculated from above-ground biomass via fixed assumed root:shoot ratios not specific for hedgerows. Only one study reported measured root biomass under hedgerows with a root:shoot ratio of 0.94:1 ± 0.084. With this shoot:root ratio an average below-ground biomass carbon stock of 45 ± 28 Mg C ha<sup>-1 </sup>was estimated, but with high uncertainty.</p><p>Thus, the establishment of hedgerows on cropland could lead to a SOC sequestration of 1.0 Mg C ha<sup>-1</sup> year<sup>-1</sup> over a 20-year period. Additionally, up to 9.4 Mg C ha<sup>-1</sup> year<sup>-1</sup> could be sequestered in the hedgerow biomass over a 10 year period. In total, hedgerows store 106 ± 41 Mg C ha<sup>-1</sup> more C than croplands. Our results indicate that organic carbon stored in hedgerows is similar high as in forests. We discuss how the establishment of hedgerows, especially on cropland, can thus be an effective option for C sequestration in agricultural landscapes, meanwhile enhance biodiversity, and soil protection.</p>


2021 ◽  
Author(s):  
R. Kaushal ◽  
S. Islam ◽  
Salil Tewari ◽  
J. M.S. Tomar ◽  
S. Thapliyal ◽  
...  

Abstract The rapid growth rate, high biomass production, and annual harvesting, makes bamboo as suitable species for commercial production. Allometric equations for many broadleaf and conifer tree species are available. However, knowledge on biomass production and allometric equations of bamboos are limited. This study aims at developing species specific allometric models for predicting biomass and synthetic height values as a proxy variable for seven bamboo species in Himalayan foothills. Two power form based allometric models were used to predict above ground and culm biomass using Diameter at breast height (D) alone and D in combination with culm height (H) as independent variable. This study also extended to establishing H-D allometric model that can be used to generate synthetic H values as proxy to missing H. In the seven bamboo species studied, among three major biomass component (culm, branch and foliage), culm is the most important component with highest share (69.56 to 78.71%).Distribution of percentage (%) share of culm, branch and foliage to above ground fresh weight varies significantly between different bamboo species. D. hamiltonii has highest productivity for above ground biomass components. Ratio of dry to fresh weight of seven bamboo species was estimated for culm, branch, foliage and above ground biomass to convert fresh weight to dry weight.


2020 ◽  
Vol 5 (1) ◽  
pp. 13
Author(s):  
Negar Tavasoli ◽  
Hossein Arefi

Assessment of forest above ground biomass (AGB) is critical for managing forest and understanding the role of forest as source of carbon fluxes. Recently, satellite remote sensing products offer the chance to map forest biomass and carbon stock. The present study focuses on comparing the potential use of combination of ALOSPALSAR and Sentinel-1 SAR data, with Sentinel-2 optical data to estimate above ground biomass and carbon stock using Genetic-Random forest machine learning (GA-RF) algorithm. Polarimetric decompositions, texture characteristics and backscatter coefficients of ALOSPALSAR and Sentinel-1, and vegetation indices, tasseled cap, texture parameters and principal component analysis (PCA) of Sentinel-2 based on measured AGB samples were used to estimate biomass. The overall coefficient (R2) of AGB modelling using combination of ALOSPALSAR and Sentinel-1 data, and Sentinel-2 data were respectively 0.70 and 0.62. The result showed that Combining ALOSPALSAR and Sentinel-1 data to predict AGB by using GA-RF model performed better than Sentinel-2 data.


2021 ◽  
Vol 11 (01) ◽  
pp. 100-113
Author(s):  
M. G. Origenes ◽  
R. L. Lapitan

It is documented that the amounts of carbon stored and its level of degradation in different forests compositions and different types of forest is mostly unknown, Philippines is no exemption as little was done in some places of this country. This study was conducted to assess carbon stock through above ground biomass of trees at different forest composition in Mt. Malindawag. There were three (3) 20m x 20m sample plots (quadrats) (400m2 equivalent to 0.04 ha) established as replicate plots provided with 50m intervals. Forest composition such as the Agroforestry area, mixed forest area and the Plantation forest were assessed in terms of the number of individuals, number of species, diameter, and height to calculate the biomass, tree biomass density as well as the carbon stock. Based on the results of the study conducted in different forest compositions of Mt. Malindawag, plantation forest has the highest carbon stocking rate. However, these results were not significantly different from the other forest composition. This was associated with a higher accumulated diameter, which resulted in higher biomass and eventually carbon stock. Species found in this forest composition are productive and have lesser number of individuals; therefore, there is lesser competition for resources such as light. Such a mechanism might contribute to the higher biomass and carbon stock. However, the result may not be right to other areas due to uncontrollable factors, anthropogenic and environmental factors. Hence, it is recommended to have further studies on areas where trees have similar age, species diversity index as well as stand development and site productivity for a more accurate and quantifiable carbon stock.


2018 ◽  
Vol 7 (1) ◽  
pp. 1 ◽  
Author(s):  
Suryono Suryono ◽  
Nirwani Soenardjo ◽  
Edi Wibowo ◽  
Raden Ario ◽  
Edi Fahrur Rozy

Ekosistem mangrove memiliki fungsi ekologis sebagai penyerap dan penyimpan karbon. Mangrove menyerap CO2 pada saat proses fotosintesis, kemudian mengubahnya menjadi karbohidrat dengan menyimpannya dalam bentuk biomassa pada akar ,pohon, serta daun. Tujuan dari penelitian ini adalah untuk mengetahui total above ground biomass, belowground biomass, simpanan karbon atas, simpanan karbon bawah, dan karbon organik pada sedimen dasar  di Hutan Mangrove Perancak, Jembrana, Bali. Sampling dilakukan dengan  metode purposive sampling dengan dasar pertimbangan berupa jenis, kerapatan serta diameter pohon mangrove. Estimasi biomassa digunakan  metode tanpa pemanenan dengan mengukur diameter at breast height (DBH, 1.3 m) mangrove. Simpanan karbon diestimasi dari 46% biomasa. Kandungan karbon organik pada sedimen diukur dengan  menggunakan metode lost on ignition (LOI). Hasil penelitian menunjukkan total above ground biomass sebesar 187,21 ton/ha, below ground biomass sebesar 125,43 ton/ha, simpanan karbon atas sebesar 86,11 ton/ha, simpanan karbon bawah sebesar 57,69 ton/ha, sedangkan  karbon organik sedimen sebesar 359,24 ton/ha. The mangrove ecosystem has ecological functions as an absorber and carbon storage. Mangrove absorbs CO2 during the process of photosynthesis, then changes it into carbohydrates bystoring it in the form of tree biomass. The aim of this research is to know the total of above ground biomass, below ground biomass, upper carbon storage, lower carbon storage, and sediment organic carbon in Perancak Mangrove Forest, Jembrana, Bali. The selection of sampling location using purposive sampling method with consideration of type, density and diameter of mangrove. The estimatorion of biomass using the method without harvesting by measuring diameter at breast height (DBH, 1.3 m) mangrove. Carbon deposits are estimated from46% of biomass. The organic carbon content of sediment was measured using the lost on ignition (LOI) method. The results showedthat  the total of above ground biomass of 187.21 ton / ha, below ground biomass 125,43 ton / ha, upper carbon store of 86,11 ton / ha, lower carbon store of 57,69 ton / ha, and organic carbon sedimen to 359.24 tons / ha.


2010 ◽  
Vol 53 (S1) ◽  
pp. 176-183 ◽  
Author(s):  
Min Xu ◽  
ChunXiang Cao ◽  
QingXi Tong ◽  
ZengYuan Li ◽  
Hao Zhang ◽  
...  

2016 ◽  
Vol 43 (4) ◽  
pp. 397-406 ◽  
Author(s):  
LEAH L. BREMER ◽  
KATHLEEN A. FARLEY ◽  
OLIVER A. CHADWICK ◽  
CAROL P. HARDEN

SUMMARYAndean grasslands (páramos) are highly valued for their role in regional water supply as well as for their biodiversity and large soil carbon stocks. Several Payment for Ecosystem Services (PES) programmes promote either afforestation or alteration of traditional burning regimes under the assumption that these land management strategies will maximize páramo ecosystem services, including carbon storage. However, knowledge of the effects of incentivized land uses is limited. In an evaluation of how afforestation and elimination of burning affect carbon storage at a site in southern Ecuador, we found the highest above-ground biomass carbon levels at afforested sites (99.3–122.0 t C ha−1), while grassland sites reached 23.9 t C ha−1after 45 years of burn exclusion. Soil carbon storage from 0–20 cm was high across all sites (172.8–201.9 t C ha−1), but was significantly lower with afforestation than with burn exclusion. These findings suggest that, although afforestation is generally favoured when carbon is the primary ecosystem service of interest, grasslands with infrequent burning have important potential as a land management strategy when both above-ground biomass and soil carbon are considered. These results are relevant to the development and adaptation of PES programmes focused on carbon as well as those focused on multiple ecosystem services.


2021 ◽  
Vol 944 (1) ◽  
pp. 012064
Author(s):  
Z A Harahap ◽  
Khairunnisa ◽  
I E Susetya ◽  
Y P Rahayu

Abstract This study aims to determine the carbon stock in seagrass communities in Central Tapanuli, North Sumatera, Indonesia. The research was conducted from July to August 2020 in the coastal areas of Hajoran and Jago Jago. The parameters measured in this study were density, coverage, biomass, carbon content, and carbon stock in seagrass. Biomass analysis and carbon measurement are divided into the top (above-ground biomass) and the bottom substrate (below-ground biomass). Carbon measurements are conducted using the loss on ignition (LOI) approach. The results showed that the seagrass ecosystem on the coast of Central Tapanuli Regency, which was covered by monospecies Enhalus acoroides, was in a less healthy condition with a cover percentage of 30.3-33.3% and a density of 59-67 shoots/m2. Above-ground and below-ground seagrass biomass reached 140.19-188.72 g/m2 and 368.13-423.69 g/m2 respectively, while carbon stock reached 70.57-94.86 g Corg/m2 and 18731-19603 g Corg/m2 and total standing stock range 257.87-290.90 g Corg/m2. The data obtained from this research can be used as a database to see the potential of seagrass beds as storage of CO2 and as an effort to mitigate and adapt to climate change.


Sign in / Sign up

Export Citation Format

Share Document