scholarly journals The relationship between pulmonary function metrics and radiation-induced lung injury

2012 ◽  
Vol 3 (1) ◽  
Author(s):  
Justin M. Linam ◽  
David Madtes ◽  
Laura Chow ◽  
Karen Liu ◽  
Rodney Schmidt ◽  
...  
Author(s):  
Ming Fan ◽  
Lawrence B Marks ◽  
Pehr Lind ◽  
Donna Hollis ◽  
Roxanne T Woel ◽  
...  

2013 ◽  
Vol 106 ◽  
pp. S261
Author(s):  
G.R. D'Agostino ◽  
F. De Rose ◽  
M. Balducci ◽  
F. Micciché ◽  
A.R. Larici ◽  
...  

2021 ◽  
Vol 53 (1) ◽  
pp. 267-273
Author(s):  
Tomohiro Itonaga ◽  
Shinji Sugahara ◽  
Ryuji Mikami ◽  
Tatsuhiko Saito ◽  
Takafumi Yamada ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Yifang Jiang ◽  
Fengming You ◽  
Jie Zhu ◽  
Chuan Zheng ◽  
Ran Yan ◽  
...  

Cryptotanshinone (CTS) was reported to repress a variety of systemic inflammation and alleviate cardiac fibrosis, but it is still unclear whether CTS could prevent radiation-induced lung injury (RILI). Here, we investigated the effects and underlying mechanisms of CTS on a RILI rat model. Our data revealed that CTS could efficiently preserve pulmonary function in RILI rats and reduce early pulmonary inflammation infiltration elicited, along with marked decreased levels of IL-6 and IL-10. Moreover, we found that CTS is superior to prednisone in attenuating collagen deposition and pulmonary fibrosis, in parallel with a marked drop of HYP (a collagen indicator) and α-SMA (a myofibroblast marker). Mechanistically, CTS inhibited profibrotic signals TGF-β1 and NOX-4 expressions, while enhancing the levels of antifibrotic enzyme MMP-1 in lung tissues. It is noteworthy that CTS treatment, in consistent with trichrome staining analysis, exhibited a clear advantage over PND in enhancing MMP-1 levels. However, CTS exhibited little effect on CTGF activation and on COX-2 suppression. Finally, CTS treatment significantly mitigated the radiation-induced activation of CCL3 and its receptor CCR1. In summary, CTS treatment could attenuate RILI, especially pulmonary fibrosis, in rats. The regulation on production and release of inflammatory or fibrotic factors IL-6, IL-10, TGF-β1, NOX-4, and MMP-1, especially MMP-1 and inhibition on CCL3/CCR1 activation, may partly attribute to its attenuating RILI effect.


Author(s):  
M. L. Knotek

Modern surface analysis is based largely upon the use of ionizing radiation to probe the electronic and atomic structure of the surfaces physical and chemical makeup. In many of these studies the ionizing radiation used as the primary probe is found to induce changes in the structure and makeup of the surface, especially when electrons are employed. A number of techniques employ the phenomenon of radiation induced desorption as a means of probing the nature of the surface bond. These include Electron- and Photon-Stimulated Desorption (ESD and PSD) which measure desorbed ionic and neutral species as they leave the surface after the surface has been excited by some incident ionizing particle. There has recently been a great deal of activity in determining the relationship between the nature of chemical bonding and its susceptibility to radiation damage.


2018 ◽  
Vol 315 (1) ◽  
pp. L1-L10 ◽  
Author(s):  
Tsukasa Okamoto ◽  
Susan K. Mathai ◽  
Corinne E. Hennessy ◽  
Laura A. Hancock ◽  
Avram D. Walts ◽  
...  

The common gain-of-function MUC5B promoter variant ( rs35705950 ) is the strongest risk factor for the development of idiopathic pulmonary fibrosis (IPF). While the role of complement in IPF is controversial, both MUC5B and the complement system play a role in lung host defense. The aim of this study was to evaluate the relationship between complement component 3 (C3) and MUC5B in patients with IPF and in bleomycin-induced lung injury in mice. To do this, we evaluated C3 gene expression in whole lung tissue from 300 subjects with IPF and 175 healthy controls. Expression of C3 was higher in IPF than healthy controls {1.40-fold increase [95% confidence interval (CI) 1.31–1.50]; P < 0.0001} and even greater among IPF subjects with the highest-risk IPF MUC5B promoter genotype [TT vs. GG = 1.59-fold (95% CI 1.15–2.20); P < 0.05; TT vs. GT = 1.66-fold (95% CI 1.20–2.30); P < 0.05]. Among subjects with IPF, C3 expression was significantly higher in the lung tissue without microscopic honeycombing than in the lung tissue with microscopic honeycombing [1.40-fold increase (95% CI 1.23– 1.59); P < 0.01]. In mice, while bleomycin exposure increased Muc5b protein expression, C3-deficient mice were protected from bleomycin-induced lung injury. In aggregate, our findings indicate that the MUC5B promoter variant is associated with higher C3 expression and suggest that the complement system may contribute to the pathogenesis of IPF.


2003 ◽  
Vol 79 (3) ◽  
pp. 159-167 ◽  
Author(s):  
Ji-Hong Hong ◽  
Shih-Ming Jung ◽  
Thomas Chang Yao Tsao ◽  
Chi-Jung Wu ◽  
Chin-Yi Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document