scholarly journals Hot Weather Season (March - May 1991)

MAUSAM ◽  
2021 ◽  
Vol 43 (2) ◽  
pp. 219-228
Author(s):  
Editor Mausam
Keyword(s):  
2016 ◽  
Vol 7 (6) ◽  
pp. 185
Author(s):  
Mouna Barhmi ◽  
M'hammed Merbouh ◽  
Hamid Khachab ◽  
Nabil Bella ◽  
Mohammed El Mir ◽  
...  

Symmetry ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1718
Author(s):  
Chien-Hsing Chou ◽  
Yu-Sheng Su ◽  
Che-Ju Hsu ◽  
Kong-Chang Lee ◽  
Ping-Hsuan Han

In this study, we designed a four-dimensional (4D) audiovisual entertainment system called Sense. This system comprises a scene recognition system and hardware modules that provide haptic sensations for users when they watch movies and animations at home. In the scene recognition system, we used Google Cloud Vision to detect common scene elements in a video, such as fire, explosions, wind, and rain, and further determine whether the scene depicts hot weather, rain, or snow. Additionally, for animated videos, we applied deep learning with a single shot multibox detector to detect whether the animated video contained scenes of fire-related objects. The hardware module was designed to provide six types of haptic sensations set as line-symmetry to provide a better user experience. After the system considers the results of object detection via the scene recognition system, the system generates corresponding haptic sensations. The system integrates deep learning, auditory signals, and haptic sensations to provide an enhanced viewing experience.


Author(s):  
Rajat Gupta ◽  
Alastair Howard ◽  
Mike Davies ◽  
Anna Mavrogianni ◽  
Ioanna Tsoulou ◽  
...  

This paper brings together objective and subjective data on indoor temperature and thermal comfort to examine the magnitude and perception of summertime overheating in two London-based care homes occupying modern and older buildings. Continuous monitoring of indoor and outdoor temperature, relative humidity and CO2 levels was conducted in summer 2019 along with thermal comfort surveys and semi-structured interviews with older residents and staff of the care settings. Indoor temperatures were found to be high (>30°C) with bedroom temperatures often higher at night than daytime across both care settings. Limited opening due to window restrictors constrained night-time ventilation. Overheating was prevalent with four out of the five monitored bedrooms failing all four overheating metrics investigated. While 35–42% of staff responses perceived indoor temperatures to be uncomfortably hot, only 13–19% of resident responses were found to do so, indicating that elderly residents tend to be relatively insensitive to heat, leaving them open to overheating without realising it. Residents and staff in the modern care setting were less satisfied with their thermal conditions. As hybrid buildings, care settings need to keep both residents and staff comfortable and healthy during hot weather through night-time ventilation, management of heating and supportive institutional practices. Practical application: Care home designs have focused on keeping residents warm through the winter, neglecting the risks of summertime overheating. Care homes are hybrid buildings serving as living spaces for vulnerable older residents and offices/workspaces for staff. Providing comfort to both groups during periods of hot weather is challenging. Opportunities for ventilation are limited by Health & Safety regulations that mandate up to 10 cm maximum window openings and institutional practices that result in windows routinely kept closed, particularly at night. Utilising natural and where possible cross-ventilation should be considered along with external shading. Heating should be managed to avoid unwanted heat gains in the summer.


2019 ◽  
Vol 29 (8) ◽  
pp. 1101-1117
Author(s):  
Lin Yang ◽  
Xiangdong Li ◽  
Jiyuan Tu

Due to the fast development of high-speed rail (HSR) around the world, high-speed trains (HSTs) are becoming a strong competitor against airliners in terms of long-distance travel. Compared with airliner cabins, HST cabins have much larger window sizes. When the big windows provide better lighting and view of the scenery, they also have significant effects on the thermal conditions in the cabins due to the solar radiation through them. This study presents a numerical study on the solar radiation on the thermal comfort in a typical HST cabin. The effect of solar radiation was discussed in terms of airflow pattern, temperature distribution and thermal comfort indices. Parametric studies with seven different daytime hours were carried out. The effect of using the roller curtain was also studied. The overall cabin air temperature, especially near passengers, was found to have significantly increased by solar radiation. Passengers sitting next to windows were recorded to have an obvious thermal comfort variation at different hours of the day. To improve the passengers’ comfort and reduce energy consumption during hot weather, the use of a curtain could effectively reduce the solar radiation effect in the cabin environment.


1947 ◽  
Vol 20 (2) ◽  
pp. 525-526
Author(s):  
W. H. Willott

Abstract In a series of cross-breaking tests carried out on hard rubber during hot weather, the values of the breaking elongation were higher than was expected, although the cross-breaking strength was of the usual order. It was thought that the high temperature might account for these results by making the hard rubber more plastic. The following experiments were, therefore, performed to investigate the effect of small changes of temperature, such as are encountered at different times of the year, on the cross-breaking strength and elongation. Test-pieces of standard size (75 × 25 × 5 mm.) were cut from a sheet of hard rubber of the composition: 68 per cent rubber, 32 per cent sulfur, which had been vulcanized for 5 hours at 155° C. They were immersed in a beaker of water and kept at the required temperature for about 15 minutes, when they were judged to have attained a steady temperature. The tests were carried out on an Avery fabric-testing machine fitted with special clamps to give a three-point loading test, the distance between the supporting knife-edges being 50.4 mm. (2 in.). These clamps were heated to the temperature of the specimens by means of an electric radiator. The specimens were tested as soon as possible after they had been removed from the water, so that the change of temperature during the test was reduced as far as possible. The standard conditions already laid down, were observed.


2018 ◽  
Vol 111 ◽  
pp. 287-294 ◽  
Author(s):  
Jonathon Taylor ◽  
Paul Wilkinson ◽  
Roberto Picetti ◽  
Phil Symonds ◽  
Clare Heaviside ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document