scholarly journals Sea level rise and its impact on storm surge and tide in Shanghai

MAUSAM ◽  
2021 ◽  
Vol 48 (4) ◽  
pp. 541-554
Author(s):  
ZENGHAO QIN

Based on both the historical tidal gauge and ground subsidence records for the seven stations in Shanghai region, a non-linear statistical model fitting the variation of the mean annual eustatic sea level (ESL) is established to reveal the characteristics of the ESL in the past century and to estimate the mean annual relative sea level (RSL) in the next five decades by the model extrapolation for Shanghai region. The estimated values of the sea level rises are assessed to be fairly reasonable. The impact of the estimated sea level rise in the coming decades on the storm surges and tides in Shanghai region is numerically computed by using the two-dimensional nonlinear storm surge and tide dynamic models. In addition, on the basis of numerical integration of the same dynamic model, the probable maximum water levels resulting from the RSL in the coming decades are also estimated by the probable optimal combination of the track, intensity, landfall site, incident angle of tropical cyclone and spring tide.  

2015 ◽  
Vol 96 ◽  
pp. 118-131 ◽  
Author(s):  
A. Arns ◽  
T. Wahl ◽  
S. Dangendorf ◽  
J. Jensen

2019 ◽  
Vol 2 (1) ◽  
pp. 1-20
Author(s):  
S.E. Grenfell ◽  
F. Fortune ◽  
M.F. Mamphoka ◽  
N. Sanderson

We investigate coastal wetland ecosystem resilience to sea level rise by modelling sea level rise trajectories and the impact on vegetation communities for a coastal wetland in South Africa. The rate of sediment accretion was modelled relative to IPCC sea level rise estimates for multiple RCP scenarios. For each scenario, inundation by neap and spring tide and the 2, 4, and 8 year recurrence interval water level was modelled over a period of 200 years. When tidal variation is considered, the rate of sediment accretion exceeds rising sea levels associated with climate change, resulting in no major changes in terms of inundation. When sea level rise scenarios were modelled in conjunction with recurrence interval water levels, flooding of the coastal wetland was much greater than current levels at 1 in 4 and 1 in 8 year events. In the long term, increases in salinity may cause a reduction in Phragmites australis cover. Very small increases in depth and frequency of inundation are likely to cause an expansion of samphire species at the expense of Juncus spp. The study suggests that for this wetland, variability in flow may be a key factor in balancing wetland resilience.


2017 ◽  
Vol 17 (9) ◽  
pp. 1559-1571 ◽  
Author(s):  
Yann Krien ◽  
Bernard Dudon ◽  
Jean Roger ◽  
Gael Arnaud ◽  
Narcisse Zahibo

Abstract. In the Lesser Antilles, coastal inundations from hurricane-induced storm surges pose a great threat to lives, properties and ecosystems. Assessing current and future storm surge hazards with sufficient spatial resolution is of primary interest to help coastal planners and decision makers develop mitigation and adaptation measures. Here, we use wave–current numerical models and statistical methods to investigate worst case scenarios and 100-year surge levels for the case study of Martinique under present climate or considering a potential sea level rise. Results confirm that the wave setup plays a major role in the Lesser Antilles, where the narrow island shelf impedes the piling-up of large amounts of wind-driven water on the shoreline during extreme events. The radiation stress gradients thus contribute significantly to the total surge – up to 100 % in some cases. The nonlinear interactions of sea level rise (SLR) with bathymetry and topography are generally found to be relatively small in Martinique but can reach several tens of centimeters in low-lying areas where the inundation extent is strongly enhanced compared to present conditions. These findings further emphasize the importance of waves for developing operational storm surge warning systems in the Lesser Antilles and encourage caution when using static methods to assess the impact of sea level rise on storm surge hazard.


Atmosphere ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 95
Author(s):  
Phil J. Watson

This paper provides an Extreme Value Analysis (EVA) of the hourly water level record at Fort Denison dating back to 1915 to understand the statistical likelihood of the combination of high predicted tides and the more dynamic influences that can drive ocean water levels higher at the coast. The analysis is based on the Peaks-Over-Threshold (POT) method using a fitted Generalised Pareto Distribution (GPD) function to estimate extreme hourly heights above mean sea level. The analysis highlights the impact of the 1974 East Coast Low event and rarity of the associated measured water level above mean sea level at Sydney, with an estimated return period exceeding 1000 years. Extreme hourly predictions are integrated with future projections of sea level rise to provide estimates of relevant still water levels at 2050, 2070 and 2100 for a range of return periods (1 to 1000 years) for use in coastal zone management, design, and sea level rise adaptation planning along the NSW coastline. The analytical procedures described provide a step-by-step guide for practitioners on how to develop similar baseline information from any long tide gauge record and the associated limitations and key sensitivities that must be understood and appreciated in applying EVA.


Author(s):  
Kristian Breili ◽  
Matthew James Ross Simpson ◽  
Erlend Klokkervold ◽  
Oda Roaldsdotter Ravndal

Abstract. Using new high accuracy Light Detection and Ranging elevation data we generate coastal flooding maps for Norway. Thus far, we have mapped ~ 80 % of the coast, for which we currently have data of sufficient accuracy to perform our analysis. Although Norway is generally at low risk from sea-level rise largely owing to its steep topography, the maps presented here show that on local scales, many parts of the coast are potentially vulnerable to flooding. There is a considerable amount of infrastructure at risk along the relatively long and complicated coastline. Nationwide we identify a total area of 400 km2, 105,000 buildings, and 510 km of roads that are at risk of flooding from a 200 year storm-surge event at present. These numbers will increase to 610 km2, 137,000, and 1340 km with projected sea-level rise to 2090 (95th percentile of RCP8.5 as recommended in planning). We find that some of our results are likely biased high owing to erroneous mapping (at least for lower water levels close to the tidal datum which delineates the coastline). A comparison of control points from different terrain types indicates that the elevation model has a root mean square error of 0.26 m and is the largest source of uncertainty in our mapping method. The coastal flooding maps and associated statistics are freely available, and alongside the development of coastal climate services, will help communicate the risks of sea-level rise and storm surge to stakeholders. This will in turn aid coastal management and climate adaption work in Norway.


2017 ◽  
Author(s):  
Yann Krien ◽  
Bernard Dudon ◽  
Jean Roger ◽  
Gaël Arnaud ◽  
Narcisse Zahibo

Abstract. In the Lesser Antilles, coastal inundations from hurricane-induced storm surges cause great threats to lives, properties, and ecosystems. Assessing current and future storm surge hazard with sufficient spatial resolution is of primary interest to help coastal planners and decision makers develop mitigation and adaptation measures. Here, we use wave-current numerical models and statistical methods to investigate worst case scenarios and 100-year surge levels for the case study of Martinique, under present climate or considering a potential sea-level rise. Results confirm that the wave setup plays a major role in Lesser Antilles, where the narrow island shelf impedes the piling-up of large amounts of wind-driven water on the shoreline during extreme events. The radiation stress gradients thus contribute significantly to the total surge, up to 100 % in some cases. The non-linear interactions of sea level rise with bathymetry and topography are generally found to be relatively small in Martinique, but can reach several tens of centimeters in low-lying areas where the inundation extent is strongly enhanced compared to present conditions. These findings further emphasize the importance of waves for developing operational storm surge warning systems in the Lesser Antilles, and encourage caution when using static methods to assess the impact of sea level rise on storm surge hazard.


Author(s):  
Joshua A. Pulcinella ◽  
Arne M. E. Winguth ◽  
Diane Jones Allen ◽  
Niveditha Dasa Gangadhar

Hurricanes and other extreme precipitation events can have devastating effects on population and infrastructure that can create problems for emergency responses and evacuation. Projected climate change and associated global warming may lead to an increase in extreme weather events that results in greater inundation from storm surges or massive precipitation. For example, record flooding during Hurricane Katrina or, more recently, during Hurricane Harvey in 2017, led to many people being cut off from aid and unable to evacuate. This study focuses on the impact of severe weather under climate change for areas of Harris County, TX that are susceptible to flooding either by storm surge or extreme rainfall and evaluates the transit demand and availability in those areas. Future risk of flooding in Harris County was assessed by GIS mapping of the 100-year and 500-year FEMA floodplains and most extreme category 5 storm tide and global sea level rise. The flood maps have been overlaid with population demographics and transit accessibility to determine vulnerable populations in need of transit during a disaster. It was calculated that 70% of densely populated census block groups are located within the floodplains, including a disproportional amount of low-income block groups. The results also show a lack of transit availability in many areas susceptible to extreme storm surge exaggerated with sea level rise. Further study of these areas to improve transit infrastructure and evacuation strategies will improve the outcomes of extreme weather events in the future.


2010 ◽  
Vol 2 (4) ◽  
pp. 271-293 ◽  
Author(s):  
Ross N. Hoffman ◽  
Peter Dailey ◽  
Susanna Hopsch ◽  
Rui M. Ponte ◽  
Katherine Quinn ◽  
...  

Abstract Sea level is rising as the World Ocean warms and ice caps and glaciers melt. Published estimates based on data from satellite altimeters, beginning in late 1992, suggest that the global mean sea level has been rising on the order of 3 mm yr−1. Local processes, including ocean currents and land motions due to a variety of causes, modulate the global signal spatially and temporally. These local signals can be much larger than the global signal, and especially so on annual or shorter time scales. Even increases on the order of 10 cm in sea level can amplify the already devastating losses that occur when a hurricane-driven storm surge coincides with an astronomical high tide. To quantify the sensitivity of property risk to increasing sea level, changes in expected annual losses to property along the U.S. Gulf and East Coasts are calculated as follows. First, observed trends in sea level rise from tide gauges are extrapolated to the year 2030, and these changes are interpolated to all coastal locations. Then a 10 000-yr catalog of simulated hurricanes is used to define critical wind parameters for each event. These wind parameters then drive a parametric time-evolving storm surge model that accounts for bathymetry, coastal geometry, surface roughness, and the phase of the astronomical tide. The impact of the maximum storm surge height on a comprehensive inventory of commercial and residential property is then calculated, using engineering models that take into account the characteristics of the full range of construction types. Average annual losses projected to the year 2030 are presented for regions and key states and are normalized by aggregate property value on a zip code by zip code basis. Comparisons to the results of a control run reflecting the risk today quantify the change in risk per dollar of property on a percentage basis. Increases in expected losses due to the effect of sea level rise alone vary by region, with increases of 20% or more being common. Further sensitivity tests quantify the impact on the risk of sea level rise plus additional factors, such as changes in hurricane frequency and intensity as a result of rising sea surface temperatures.


Geosciences ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 76 ◽  
Author(s):  
David Didier ◽  
Marion Bandet ◽  
Pascal Bernatchez ◽  
Dany Dumont

Coastal management often relies on large-scale flood mapping to produce sea level rise assessments where the storm-related surge is considered as the most important hazard. Nearshore dynamics and overland flow are also key parameters in coastal flood mapping, but increase the model complexity. Avoiding flood propagation processes using a static flood mapping is less computer-intensive, but generally leads to overestimation of the flood zone, especially in defended urban backshore. For low-lying communities, sea level rise poses a certain threat, but its consequences are not only due to a static water level. In this paper, the numerical process-based model XBeach is used in 2D hydrodynamic mode (surfbeat) to reproduce an observed historical flood in Maria (eastern Canada). The main goal is to assess the impacts of a future storm of the same magnitude in the horizon 2100 according to an increase in sea level rise. The model is first validated from in situ observations of waves and water levels observed on the lower foreshore. Based on field observations of a flood extent in 2010, the simulated flooded area was also validated given a good fit (59%) with the actual observed flood. Results indicate that the 2010 storm-induced surge generated overwash processes on multiple areas and net landward sediment transport and accumulation (washover lobes). The flood was caused by relatively small nearshore waves (Hs < 1 m), but despite small water depth (>1.2 m), high flow velocities occurred in the main street (U > 2 m/s) prior to draining in the salt marsh. The impact of sea level rise on the low-lying coastal community of Maria could induce a larger flood area in 2100, deeper floodwater, and higher flow velocities, resulting in higher hazard for the population.


2013 ◽  
Vol 6 (2) ◽  
pp. 81-87 ◽  
Author(s):  
T. L. A. Driessen ◽  
M. van Ledden

Abstract. The objective of this paper was to describe the impact of climate change on the Mississippi River flood hazard in the New Orleans area. This city has a unique flood risk management challenge, heavily influenced by climate change, since it faces flood hazards from multiple geographical locations (e.g. Lake Pontchartrain and Mississippi River) and multiple sources (hurricane, river, rainfall). Also the low elevation and significant subsidence rate of the Greater New Orleans area poses a high risk and challenges the water management of this urban area. Its vulnerability to flooding became dramatically apparent during Hurricane Katrina in 2005 with huge economic losses and a large number of casualties. A SOBEK Rural 1DFLOW model was set up to simulate the general hydrodynamics. This model included the two important spillways that are operated during high flow conditions. A weighted multi-criteria calibration procedure was performed to calibrate the model for high flows. Validation for floods in 2011 indicated a reasonable performance for high flows and clearly demonstrated the influence of the spillways. 32 different scenarios were defined which included the relatively large sea level rise and the changing discharge regime that is expected due to climate change. The impact of these scenarios on the water levels near New Orleans were analysed by the hydrodynamic model. Results showed that during high flows New Orleans will not be affected by varying discharge regimes, since the presence of the spillways ensures a constant discharge through the city. In contrary, sea level rise is expected to push water levels upwards. The effect of sea level rise will be noticeable even more than 470 km upstream. Climate change impacts necessitate a more frequent use of the spillways and opening strategies that are based on stages.


Sign in / Sign up

Export Citation Format

Share Document