scholarly journals A short term characterisation of wind and temperature over Maitri, East Antarctica

MAUSAM ◽  
2021 ◽  
Vol 62 (4) ◽  
pp. 567-576
Author(s):  
K.S. HOSALIKAR ◽  
SUSHMA NAIR ◽  
RAJIV KRISHNAMURTHY

Polar Science is gaining increased importance in Climate Change studies because of the profound influence Polar Climatology has on the Global Climate. Research shows that Antarctica seems to be warming around the edges and cooling at the center at the same time. East Antarctica is climatologically colder than west Antarctica because of its higher elevation. A short term characterization of wind and the temperature over Maitri is attempted in this paper. Maximum and Minimum temperatures showed a tendency to decrease with winter contributing the most to the change. The Wind Directions were predominantly South-South-Easterly in summer and autumn and South-Easterly in winter and spring, with katabatic winds showing the maximum frequency in autumn. The wind speeds were found to be most variable in winter. Greater contributions to the wind chill temperatures were found from the winds, with the tendency for change being more prominent in the transition seasons.

2008 ◽  
Vol 54 (184) ◽  
pp. 17-27 ◽  
Author(s):  
Jeremy N. Bassis ◽  
Helen A. Fricker ◽  
Richard Coleman ◽  
Jean-Bernard Minster

AbstractFor three field seasons (2002/03, 2004/05, 2005/06) we have deployed a network of GPS receivers and seismometers around the tip of a propagating rift on the Amery Ice Shelf, East Antarctica. During these campaigns we detected seven bursts of episodic rift propagation. To determine whether these rift propagation events were triggered by short-term environmental forcings, we analyzed simultaneous ancillary data such as wind speeds, tidal amplitudes and sea-ice fraction (a proxy variable for ocean swell). We find that none of these environmental forcings, separately or together, correlated with rift propagation. This apparent insensitivity of ice-shelf rift propagation to short-term environmental forcings leads us to suggest that the rifting process is primarily driven by the internal glaciological stress. Our hypothesis is supported by order-of-magnitude calculations that the glaciological stress is the dominant term in the force balance. However, our calculations also indicate that as the ice shelf thins or the rift system matures and iceberg detachment becomes imminent, short-term stresses due to winds and ocean swell may become more important.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Daisuke Hirano ◽  
Kohei Mizobata ◽  
Hiroko Sasaki ◽  
Hiroto Murase ◽  
Takeshi Tamura ◽  
...  

AbstractIce mass loss in the Wilkes Land sector of East Antarctica and the Amundsen and Bellingshausen Sea sectors of West Antarctica has contributed to a rise in sea levels over several decades. The massive continental ice behind the Totten Ice Shelf, equivalent to a few meters of sea-level rise, is grounded well below sea level and therefore, potentially vulnerable to oceanic heat. Here, we present analyses of comprehensive hydrographic observations at the continental slope and shelf break regions off Totten Ice Shelf. We provide robust evidence that the relatively warm Circumpolar Deep Water that originates at intermediate depths in the Antarctic Circumpolar Current is transported efficiently towards the shelf break by multiple cyclonic eddies. We propose that these semi-permanent cyclonic circulations play a critical role in transporting the available ocean heat towards Totten Ice Shelf, and melting it from underneath, thus eventually influencing the global climate.


2021 ◽  
pp. 1-27
Author(s):  
H. Jay Zwally ◽  
John W. Robbins ◽  
Scott B. Luthcke ◽  
Bryant D. Loomis ◽  
Frédérique Rémy

Abstract GRACE and ICESat Antarctic mass-balance differences are resolved utilizing their dependencies on corrections for changes in mass and volume of the same underlying mantle material forced by ice-loading changes. Modeled gravimetry corrections are 5.22 times altimetry corrections over East Antarctica (EA) and 4.51 times over West Antarctica (WA), with inferred mantle densities 4.75 and 4.11 g cm−3. Derived sensitivities (Sg, Sa) to bedrock motion enable calculation of motion (δB0) needed to equalize GRACE and ICESat mass changes during 2003–08. For EA, δB0 is −2.2 mm a−1 subsidence with mass matching at 150 Gt a−1, inland WA is −3.5 mm a−1 at 66 Gt a−1, and coastal WA is only −0.35 mm a−1 at −95 Gt a−1. WA subsidence is attributed to low mantle viscosity with faster responses to post-LGM deglaciation and to ice growth during Holocene grounding-line readvance. EA subsidence is attributed to Holocene dynamic thickening. With Antarctic Peninsula loss of −26 Gt a−1, the Antarctic total gain is 95 ± 25 Gt a−1 during 2003–08, compared to 144 ± 61 Gt a−1 from ERS1/2 during 1992–2001. Beginning in 2009, large increases in coastal WA dynamic losses overcame long-term EA and inland WA gains bringing Antarctica close to balance at −12 ± 64 Gt a−1 by 2012–16.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 217
Author(s):  
Jiangping Zhu ◽  
Aihong Xie ◽  
Xiang Qin ◽  
Yetang Wang ◽  
Bing Xu ◽  
...  

The European Center for Medium-Range Weather Forecasts (ECMWF) released its latest reanalysis dataset named ERA5 in 2017. To assess the performance of ERA5 in Antarctica, we compare the near-surface temperature data from ERA5 and ERA-Interim with the measured data from 41 weather stations. ERA5 has a strong linear relationship with monthly observations, and the statistical significant correlation coefficients (p < 0.05) are higher than 0.95 at all stations selected. The performance of ERA5 shows regional differences, and the correlations are high in West Antarctica and low in East Antarctica. Compared with ERA5, ERA-Interim has a slightly higher linear relationship with observations in the Antarctic Peninsula. ERA5 agrees well with the temperature observations in austral spring, with significant correlation coefficients higher than 0.90 and bias lower than 0.70 °C. The temperature trend from ERA5 is consistent with that from observations, in which a cooling trend dominates East Antarctica and West Antarctica, while a warming trend exists in the Antarctic Peninsula except during austral summer. Generally, ERA5 can effectively represent the temperature changes in Antarctica and its three subregions. Although ERA5 has bias, ERA5 can play an important role as a powerful tool to explore the climate change in Antarctica with sparse in situ observations.


2021 ◽  
Vol 95 ◽  
Author(s):  
O.M. Amin ◽  
R.A. Heckmann ◽  
S. Dallarés ◽  
M. Constenla ◽  
N.Yu. Rubtsova ◽  
...  

Abstract A number of variable descriptive accounts of Aspersentis megarhynchus (von Linstow, 1892) Golvan, 1960 have been reported from specimens collected from many species of fish in various locations off Antarctic islands. We have described a new population from Notothenia coriiceps Richardson (Nototheniidae) off Galindez Island, West Antarctica, and features not previously reported, resolved the taxonomic controversies and nomenclature, and emended and updated the generic diagnosis taking into account the newly observed structures. These are depicted in microscopic images and include the outer spiral wall of the proboscis receptacle, the thicker dorsal wall of the receptacle compared to the ventral wall, parts of the female reproductive system, the separate cement gland ducts, the dorsal position of the male gonopore and more detail of proboscis hooks and trunk spines. It is surprising that the newly observed features were missed from the many descriptions of A. megarhynchus created since the original description. The variability in A. megarhynchus is noted with a comparison of the morphometrics of our specimens vs. those in six other descriptions. We also analysed the metal composition of hooks and spines using energy-dispersive X-ray analysis and concluded a molecular characterization of the species based on 18S DNA gene, with related phylogenetic analyses.


2020 ◽  
Author(s):  
Margarita Smirnova ◽  
Uladzislau Miamin ◽  
Achim Kohler ◽  
Leonid Valentovich ◽  
Artur Akhremchuk ◽  
...  

2019 ◽  
Vol 32 (19) ◽  
pp. 6467-6490 ◽  
Author(s):  
Kimmo Ruosteenoja ◽  
Timo Vihma ◽  
Ari Venäläinen

Abstract Future changes in geostrophic winds over Europe and the North Atlantic region were studied utilizing output data from 21 CMIP5 global climate models (GCMs). Changes in temporal means, extremes, and the joint distribution of speed and direction were considered. In concordance with previous research, the time mean and extreme scalar wind speeds do not change pronouncedly in response to the projected climate change; some degree of weakening occurs in the majority of the domain. Nevertheless, substantial changes in high wind speeds are identified when studying the geostrophic winds from different directions separately. In particular, in northern Europe in autumn and in parts of northwestern Europe in winter, the frequency of strong westerly winds is projected to increase by up to 50%. Concurrently, easterly winds become less common. In addition, we evaluated the potential of the GCMs to simulate changes in the near-surface true wind speeds. In ocean areas, changes in the true and geostrophic winds are mainly consistent and the emerging differences can be explained (e.g., by the retreat of Arctic sea ice). Conversely, in several GCMs the continental wind speed response proved to be predominantly determined by fairly arbitrary changes in the surface properties rather than by changes in the atmospheric circulation. Accordingly, true wind projections derived directly from the model output should be treated with caution since they do not necessarily reflect the actual atmospheric response to global warming.


2015 ◽  
Vol 21 (3-4) ◽  
pp. 463-474 ◽  
Author(s):  
Rose L. Spear ◽  
Brajith Srigengan ◽  
Suresh Neelakantan ◽  
Wolfram Bosbach ◽  
Roger A. Brooks ◽  
...  

2015 ◽  
Vol 54 (7) ◽  
pp. 1393-1412 ◽  
Author(s):  
Dale T. Andersen ◽  
Christopher P. McKay ◽  
Victor Lagun

AbstractIn November 2008 an automated meteorological station was established at Lake Untersee in East Antarctica, producing a 5-yr data record of meteorological conditions at the lake. This dataset includes five austral summer seasons composed of December, January, and February (DJF). The average solar flux at Lake Untersee for the four years with complete solar flux data is 99.2 ± 0.6 W m−2. The mean annual temperature at Lake Untersee was determined to be −10.6° ± 0.6°C. The annual degree-days above freezing for the five years were 9.7, 37.7, 22.4, 7.0, and 48.8, respectively, with summer (DJF) accounting for virtually all of this. For these five summers the average DJF temperatures were −3.5°, −1.9°, −2.2°, −2.6°, and −2.5°C. The maximum (minimum) temperatures were +5.3°, +7.6°, +5.7°, +4.4°, and +9.0°C (−13.8°, −12.8°, −12.9°, −13.5°, and −12.1°C). The average of the wind speed recorded was 5.4 m s−1, the maximum was 35.7 m s−1, and the average daily maximum was 15 m s−1. The wind speed was higher in the winter, averaging 6.4 m s−1. Summer winds averaged 4.7 m s−1. The dominant wind direction for strong winds is from the south for all seasons, with a secondary source of strong winds in the summer from the east-northeast. Relative humidity averages 37%; however, high values will occur with an average period of ~10 days, providing a strong indicator of the quasi-periodic passage of storms across the site. Low summer temperatures and high wind speeds create conditions at the surface of the lake ice resulting in sublimation rather than melting as the main mass-loss process.


Sign in / Sign up

Export Citation Format

Share Document