scholarly journals Efficient Alkaline Isomerization of Lactose to Lactulose in the Presence of an Organogermanium Compound

2017 ◽  
Vol 64 (2) ◽  
pp. 27-32 ◽  
Author(s):  
Takae Nagasawa ◽  
Katsuyuki Sato ◽  
Takafumi Kasumi
Biochemistry ◽  
2018 ◽  
Vol 57 (29) ◽  
pp. 4276-4288 ◽  
Author(s):  
Oliver M. Deacon ◽  
Dimitri A. Svistunenko ◽  
Geoffrey R. Moore ◽  
Michael T. Wilson ◽  
Jonathan A.R. Worrall

2019 ◽  
Vol 20 (19) ◽  
pp. 4785
Author(s):  
Junya Azumi ◽  
Tomoya Takeda ◽  
Yasuhiro Shimada ◽  
Hisashi Aso ◽  
Takashi Nakamura

The organogermanium compound 3-(trihydroxygermyl)propanoic acid (THGP) has various biological activities. We previously reported that THGP forms a complex with cis-diol structures. L-3,4-Dihydroxyphenylalanine (L-DOPA), a precursor of melanin, contains a cis-diol structure in its catechol skeleton, and excessive melanin production causes skin darkening and staining. Thus, the cosmetic field is investigating substances that suppress melanin production. In this study, we investigated whether THGP inhibits melanin synthesis via the formation of a complex with L-DOPA using mushroom tyrosinase and B16 4A5 melanoma cells. The ability of THGP to interact with L-DOPA was analyzed by 1H-NMR, and the influence of THGP and/or kojic acid on melanin synthesis was investigated. We also examined the effect of THGP on cytotoxicity, tyrosinase activity, and gene expression and found that THGP interacted with L-DOPA, a precursor of melanin with a cis-diol structure. The results also showed that THGP inhibited melanin synthesis, exerted a synergistic effect with kojic acid, and did not affect tyrosinase activity or gene expression. These results suggest that THGP is a useful substrate that functions as an inhibitor of melanogenesis and that its effect is enhanced by combination with kojic acid.


1983 ◽  
Vol 6 (11) ◽  
pp. 814-820 ◽  
Author(s):  
MITSUGU HACHISU ◽  
HIROKO TAKAHASHI ◽  
TAKEMI KOEDA ◽  
YASUHARU SEKIZAWA

1975 ◽  
Vol 149 (1) ◽  
pp. 155-167 ◽  
Author(s):  
G W Pettigrew ◽  
I Aviram ◽  
A Schejter

Cytochrome c-557 from Crithidia oncopelti and cytochrome c-558 from Euglena gracilis are mitochondrial cytochromes c that have an atypical haem-binding site. It was of interest to know whether the loss of one thioether bond affected the physicochemical properties of these cytochromes. The thermodynamic parameters of the redox potential were measured. The reaction with imidazole, the kinetics and thermodynamics of the alkaline isomerization and the effect of heating on the visible spectrum are described for the ferricytochromes. The kinetics of the loss of cyanide, the spectral changes occurring on reduction with dithionite at alkaline pH values and the reactivity with CO are described for the ferrocytochromes. In many respects the cytochromes of the two protozoans are very similar to the cytochromes of horse and yeast. The ferricytochromes do, however, undergo a reversible transition to high-spin species on heating, which may be due to the more flexible attachment of the prosthetic group. Similarly the alkaline isomers of cytochromes c-557 and c-558 give rise to high-spin proteins above pH 11. The alkaline isomerization of cytochrome c-558, involves a pKobs. of 10 and kinetics which do not obey the model of Davis et al. [(1974) J. Biol. Chem.249, 2624-2632] for horse cytochrome c. It is proposed that a model involving two ionizations, followed by a conformation change, may fit the data. Both cytochromes c-557 and c-558 combine slowly with CO at neutral pH values.


Sign in / Sign up

Export Citation Format

Share Document