scholarly journals The Organogermanium Compound THGP Suppresses Melanin Synthesis via Complex Formation with L-DOPA on Mushroom Tyrosinase and in B16 4A5 Melanoma Cells

2019 ◽  
Vol 20 (19) ◽  
pp. 4785
Author(s):  
Junya Azumi ◽  
Tomoya Takeda ◽  
Yasuhiro Shimada ◽  
Hisashi Aso ◽  
Takashi Nakamura

The organogermanium compound 3-(trihydroxygermyl)propanoic acid (THGP) has various biological activities. We previously reported that THGP forms a complex with cis-diol structures. L-3,4-Dihydroxyphenylalanine (L-DOPA), a precursor of melanin, contains a cis-diol structure in its catechol skeleton, and excessive melanin production causes skin darkening and staining. Thus, the cosmetic field is investigating substances that suppress melanin production. In this study, we investigated whether THGP inhibits melanin synthesis via the formation of a complex with L-DOPA using mushroom tyrosinase and B16 4A5 melanoma cells. The ability of THGP to interact with L-DOPA was analyzed by 1H-NMR, and the influence of THGP and/or kojic acid on melanin synthesis was investigated. We also examined the effect of THGP on cytotoxicity, tyrosinase activity, and gene expression and found that THGP interacted with L-DOPA, a precursor of melanin with a cis-diol structure. The results also showed that THGP inhibited melanin synthesis, exerted a synergistic effect with kojic acid, and did not affect tyrosinase activity or gene expression. These results suggest that THGP is a useful substrate that functions as an inhibitor of melanogenesis and that its effect is enhanced by combination with kojic acid.

Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2526
Author(s):  
Joong-Hyun Shim

This study was performed to clarify the inhibitory effects of cycloheterophyllin on melanin synthesis. In order to elucidate the inhibitory effects of cycloheterophyllin on the B16F10 cell line, cell viability, messenger ribonucleic acid (mRNA) expressions, tyrosinase activity assay, and melanin production assay were measured. The effects of cycloheterophyllin on tyrosinase-related protein 1 (TYRP1)/TYRP2/tyrosinase (TYR)/microphthalmia-associated transcription factor (MITF) mRNA expressions and melanin content were determined. Quantitative real-time RT-PCR showed that cycloheterophyllin decreased the mRNA expression level of TYRP1/TYRP2/TYR/MITF genes and melanin production contents than α-MSH-treated B16F10 cells. The tyrosinase activity assay revealed that cycloheterophyllin decreased the melanin production in the B16F10 cells. These data show that cycloheterophyllin increases the whitening effects in the B16F10 cells; thus, cycloheterophyllin is a potent ingredient for skin whitening. Thus, further research on the mechanism of action of cycloheterophyllin for the development of functional materials should be investigated.


2018 ◽  
Vol 18 (7) ◽  
pp. 1064-1069 ◽  
Author(s):  
Seyed H. Hashemi-Shahri ◽  
Alireza Golshan ◽  
Seyed A. Mohajeri ◽  
Javad Baharara ◽  
Elaheh Amini ◽  
...  

Background: Crocus sativus (Iridaceae) has been traditionally used in the Iranian folk medicine and as a culinary additive. Major components of the plant that are responsible for biological properties are saffranal, crocin, picrocrocin and crocetin. Although the level of crocetin is not high, some of the important activities of saffron such as antioxidant activity have been attributed to crocetin. Objective: In the present study, we investigated the effects of crocetin on melanogenesis in B16 melanoma cells. Methods: The effect of crocetin on intracellular and mushroom tyrosinase activity and the content of melanin was evaluated spectrophotometrically. Tyrosinase and Microphthalmia-Associated Transcription Factor (MITF) protein levels were compared between Crocetin-treated and control cells after western blot analysis. The antioxidative activity of crocetin was also investigated. Results: Crocetin could inhibit mushroom tyrosinase activity and lower the amount of melanin in B16 melanoma cells. Protein levels of tyrosinase and MITF were also decreased by crocetin. Crocetin also showed antioxidant activity and depleted cellular Reactive Oxygen Species (ROS) content but had no cytotoxicity in alamarBlue® assay. Conclusion: Taken together, decreased tyrosinase activity, melanin content, tyrosinase and MITF proteins levels, and ROS production showed the inhibition of melanogenesis in B16F10 cells by crocetin. Hence, crocetin could be suggested as a potential dermatological whitening agent in skin care products.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Ching-Yi Lien ◽  
Ching-Yu Chen ◽  
Shih-Ting Lai ◽  
Chin-Feng Chan

We investigated the kinetics of 4N-acetyl-pentapeptides, Ac-P1, Ac-P2, Ac-P3, and Ac-P4, regarding inhibition of mushroom tyrosinase activity. The peptides sequences of Ac-P1, Ac-P2, Ac-P3, and Ac-P4 were Ac-RSRFK, Ac-KSRFR, Ac-KSSFR, and Ac-RSRFS, respectively. The 4N-acetyl-pentapeptides were able to reduce the oxidation ofL-DOPA by tyrosinase in a dose-dependent manner. Of the 4N-acetyl-pentapeptides, only Ac-P4 exhibited lag time (80 s) at a concentration of 0.5 mg/mL. The tyrosinase inhibitory effects of Ac-P4 (IC500.29 mg/mL) were more effective than those of Ac-P1, Ac-P2, and Ac-P3, in which IC50s were 0.75 mg/mL, 0.78 mg/mL, and 0.81 mg/mL, respectively. Kinetic analysis demonstrated that all 4N-acetyl-pentapeptides were mixed-type tyrosinase inhibitors. Furthermore, 0.1 mg/mL of Ac-P4 exhibited significant melanogenesis inhibition on B16F10 melanoma cells and was more effective than kojic acid. The melanogenesis inhibition of Ac-P4 was dose-dependent and did not induce any cytotoxicity on B16F10 melanoma cells.


Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5959
Author(s):  
Siqi Zhou ◽  
Drira Riadh ◽  
Kazuichi Sakamoto

Melanin is a natural pigment produced by cells to prevent damage caused by ultraviolet radiation. Previously, resveratrol was shown to reduce melanin synthesis. As a natural polyphenol with various biological activities, resveratrol occurs in a variety of beverages and plant foods, such as grapes. Therefore, we investigated whether grape extracts containing resveratrol also had the ability to regulate melanin synthesis. In this study, we used mouse B16F10 melanoma cells as a model for melanin synthesis with the melanogenesis-inducing α-melanocyte-stimulating hormone (α-MSH) as a positive control. Our results confirmed previous reports that resveratrol reduces melanin synthesis by reducing the activity of the rate-limiting enzyme tyrosinase. In contrast, the grape extract could not reduce melanin synthesis, and in fact promoted melanogenesis in the presence of α-MSH. The expression of genes related to melanin synthesis, such as tyrosinase, tyrosinase-related protein-1, tyrosinase-related protein-2, and microphthalmia-associated transcription factor, also supports these phenomena, which means that even in the presence of resveratrol, grape extract will strengthen the function of α-MSH in promoting melanin synthesis. Therefore, these results also provide a point of view for research on cosmetics.


2010 ◽  
Vol 74 (3) ◽  
pp. 579-582 ◽  
Author(s):  
Ichiro SHIRASUGI ◽  
Miyuki KAMADA ◽  
Takashi MATSUI ◽  
Yoichi SAKAKIBARA ◽  
Ming-Cheh LIU ◽  
...  

KSBB Journal ◽  
2020 ◽  
Vol 35 (3) ◽  
pp. 228-234
Author(s):  
Yeon-Su Koo ◽  
Taejin Park ◽  
Ji Han Sim ◽  
Min-Seon Kim ◽  
Seung-Young Kim

Sign in / Sign up

Export Citation Format

Share Document