Calculation and Analysis of a Tall Building Seismic Isolation Design

2013 ◽  
Vol 353-356 ◽  
pp. 2177-2180
Author(s):  
Hao Ming Cai ◽  
Zhong Tao ◽  
Xin Li Cao

In this paper, we calculate and analyze a tall building project of seismic isolation design. It is a frame-shear wall structure, which has twelve stories on the ground. And then, we use the time history analysis method to calculate the isolation structure. It is found that isolation equipment can extend the period of the structure, reduce the story drift in frequency earthquake. And it also can control the response of the structure. In rare earthquake, the story drift can meet the demand of unclasped; the displacement and force of the equipment can satisfy the demand of the code for seismic design of building.

2011 ◽  
Vol 243-249 ◽  
pp. 740-745 ◽  
Author(s):  
Qing Ning Li ◽  
Qing Mei Liu ◽  
Lin Zhao

A steel reinforced concrete frame-concrete core wall structure is taken as the research object in this paper. The whole space finite element models are established by software ETABS, modal analysis, response spectrum method and elastic time-history analysis are conducted. And static elastio-plastic time history analysis of the high-rise structure is conducted by software MIDAS/GEN. Seismic response of the high-rise structure is analyzed under medium earthquake and rare earthquake , elastic deformation is calculated under conventional earthquake and elastic-plastic deformation is calculated under rare earthquake. The results show that the structure can meet the requirements of no-damage under light earthquake, repairable under medium earthquake and no-collapse under strong earthquake.


2011 ◽  
Vol 255-260 ◽  
pp. 2550-2554 ◽  
Author(s):  
Nan Zhao ◽  
Hai Xia Geng ◽  
Kai Ma ◽  
Kang Ning Li

The analysis on earthquake response of one multi-tower isolation structure with an enlarged base in rare earthquake and aftershocks was carried out using elastic time history analysis method. It includes the damping effect of structure, plastic deformation of members and plastic hinges distribution in structure. The results show that isolation structure comes to plastic state under rare earthquake lighter, vertical elements remain flexible under earthquake aftershocks, the plastic hinges on horizontal members are deepen, but the structure can meet the requirement while it is renovated. Plastic hinges first appear in the bottom of structure, then they gradually develop upwards, Plastic hinges are generated at the ends of beams, but not occur in columns and walls. The displacement of structure under rare earthquake is mainly concentrated on isolation layer and it can take energy consumption by large displacement.


2021 ◽  
Vol 248 ◽  
pp. 01001
Author(s):  
Shu-jiang Jiang ◽  
Shun-zhong Yao ◽  
De-wen Liu

This paper uses SAP2000 finite element software to perform nonlinear time history analysis of nine structural systems, and compares the period, total floor displacement, base shear force, vertex displacement, and top acceleration of the structure under the action of an 8-degree rare earthquake. The research results show that seismic isolation and damping technology can effectively reduce the impact of earthquakes on structures.


2014 ◽  
Vol 1065-1069 ◽  
pp. 1513-1517
Author(s):  
Zhen Huang ◽  
Rui Qiu Li ◽  
Lin Zhi Yang

The performance-based design of structure can reach the performance objectives under different earthquakes. Mild steel shear dampers (MSSDs) have a good and stable energy dissipation capacity, and are widely used in seismic reduction structure. This paper presents a performance-based aseismic design method for RC frame with mild steel shear dampers, the numerical model of frame was established by SAP2000, then seismic performance of the frame was studied by time history analysis. Compared with pure frame, the inter-story drift ratio of MSSD frame is significantly decreased under frequent, moderate and rare earthquake respectively, and the performance objectives are satisfied, demonstrating the effectiveness of the performance-based aseismic design method.


2012 ◽  
Vol 594-597 ◽  
pp. 1640-1644
Author(s):  
Yun Xiang He ◽  
Yue Qiang ◽  
Li Li

With vigorous development of hydroelectric source in west China, the anti-seismic security issue of dam engineering attracted particular attention. This paper presented the principle of dynamic time-history analysis method and established the model with the assistance of finite element method and combined with practical engineering for further analysis on the dynamic response of displacement and stress of dam’s dynamic time-history analysis to the time history. According to the result, it is feasible and necessary to apply the dynamic time-history analysis method to study the anti-seismic performance of the dam. Furthermore, it pointed out the weak part of the dam in anti-seismic function as well as the area concentrated with critical stress, providing reference for future anti-seismic engineering and shock resistance.


2014 ◽  
Vol 1006-1007 ◽  
pp. 51-55
Author(s):  
Ying Wang ◽  
Yu Bai

To enhance the seismic performance by using the traditional method of building function, will affect the building using function. Therefore, not affecting the building using performance, the isolation device for seismic reinforcement, only through the underground part of the building project can solve these problems. In this paper, through government building envelope analysis and time history analysis, the seismic strengthening of building structures under earthquake action effects before and after the isolation device, fully explain the role.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Hongxian Chu ◽  
Yongcai Feng ◽  
Huijie Shi ◽  
Liancheng Hao ◽  
Yiqi Gao ◽  
...  

The Newmark seismic time-history analysis method can take into account the effects of natural seismic peak ground acceleration (PGA), duration, and seismic frequency; seismic wave can be input into the method for simulation. This study calculates the dynamic response of the typical seabed slope of Caofeidian in the event of a similar Tangshan earthquake, and the displacement value can be used to quantitatively reflect the influence of the earthquake on the slope of the site. The allowable displacement value of the top of buildings or submarine slope can be used as a marker of security and stability analysis, which can further provide important reference for similar slope stability evaluation and offshore engineering construction.


Author(s):  
Koichi Tai ◽  
Keisuke Sasajima ◽  
Shunsuke Fukushima ◽  
Noriyuki Takamura ◽  
Shigenobu Onishi

This paper provides a part of series of “Development of an Evaluation Method for Seismic Isolation Systems of Nuclear Power Facilities”. Paper is focused on the seismic evaluation method of the multiply supported systems, as the one of the design methodology adopted in the equipment and piping system of the seismic isolated nuclear power plant in Japan. Many of the piping systems are multiply supported over different floor levels in the reactor building, and some of the piping systems are carried over to the adjacent building. Although Independent Support Motion (ISM) method has been widely applied in such a multiply supported seismic design of nuclear power plant, it is noted that the shortcoming of ignoring correlations between each excitations is frequently misleaded to the over-estimated design. Application of Cross-oscillator, Cross-Floor response Spectrum (CCFS) method, proposed by A. Asfura and A. D. Kiureghian[1] shall be considered to be the excellent solution to the problems as mentioned above. So, we have introduced the algorithm of CCFS method to the FEM program. The seismic responses of the benchmark model of multiply supported piping system are evaluated under various combination methods of ISM and CCFS, comparing to the exact solutions of Time History analysis method. As the result, it is demonstrated that the CCFS method shows excellent agreement to the responses of Time History analysis, and the CCFS method shall be one of the effective and practical design method of multiply supported systems.


2009 ◽  
Vol 25 (3) ◽  
pp. 583-605 ◽  
Author(s):  
Wei Chiang Pang ◽  
David V. Rosowsky

This paper presents a direct displacement design (DDD) procedure that can be used for seismic design of multistory wood-framed structures. The proposed procedure is applicable to any pure shear deforming system. The design procedure is a promising design tool for performance-based seismic design since it allows consideration of multiple performance objectives (e.g., damage limitation, safety requirements) without requiring the engineer to perform a complex finite element or nonlinear time-history analysis of the complete structure. A simple procedure based on normalized modal analysis is used to convert the code-specified acceleration response spectrum into a set of interstory drift spectra. These spectra can be used to determine the minimum stiffness required for each floor based on the drift limit requirements. Specific shear walls can then be directly selected from a database of backbone curves. The procedure is illustrated on the design of two three-story ATC-63 archetype buildings, and the results are validated using nonlinear time-history analysis.


2011 ◽  
Vol 243-249 ◽  
pp. 1401-1404
Author(s):  
Yan Xia Ye ◽  
Jing Zhao

In order to study the influence of dynamic response of frame-support-wall structure with openings on floor, six 3D models with different radio of opening are made. According to the finite element mode analysis and dynamic time-history analysis, we know that the location of openings, the size of openings etc. are important to the performance of structure. In order to keep entire structure in good condition, we suggest that the rate of openings should be smaller than 6%~8%.


Sign in / Sign up

Export Citation Format

Share Document