Applying Ethical AI Frameworks in practice: Evaluating conversational AI chatbot solutions

2021 ◽  
Author(s):  
Suzanne Atkins ◽  
Ishwarradj Badrie ◽  
Sieuwert Otterloo

Ethical AI frameworks are designed to encourage the accountability, responsibility and transparency of AI applications. They provide principles for ethical design. To be truly transparent, it should be clear to the user of the AI application that the designers followed responsible AI principles. In order to test how easy it is for a user to assess the responsibility of an AI system and to understand the differences between ethical AI frameworks, we evaluated four commercial chatbots against four responsible AI frameworks. We found that the ethical frameworks produced quite different assessment scores. Many ethical AI frameworks contain requirements/principles that are difficult to evaluate for anyone except the chatbot developer. Our results also show that domain-specific ethical AI guidelines are easier to use and yield more practical insights than domain-independent frameworks. We conclude that ethical AI researchers should focus on studying specific domains and not AI as a whole, and that ethical AI guidelines should focus more on creating measurable standards and less on stating high level principles.

Author(s):  
Lichao Xu ◽  
Szu-Yun Lin ◽  
Andrew W. Hlynka ◽  
Hao Lu ◽  
Vineet R. Kamat ◽  
...  

AbstractThere has been a strong need for simulation environments that are capable of modeling deep interdependencies between complex systems encountered during natural hazards, such as the interactions and coupled effects between civil infrastructure systems response, human behavior, and social policies, for improved community resilience. Coupling such complex components with an integrated simulation requires continuous data exchange between different simulators simulating separate models during the entire simulation process. This can be implemented by means of distributed simulation platforms or data passing tools. In order to provide a systematic reference for simulation tool choice and facilitating the development of compatible distributed simulators for deep interdependent study in the context of natural hazards, this article focuses on generic tools suitable for integration of simulators from different fields but not the platforms that are mainly used in some specific fields. With this aim, the article provides a comprehensive review of the most commonly used generic distributed simulation platforms (Distributed Interactive Simulation (DIS), High Level Architecture (HLA), Test and Training Enabling Architecture (TENA), and Distributed Data Services (DDS)) and data passing tools (Robot Operation System (ROS) and Lightweight Communication and Marshalling (LCM)) and compares their advantages and disadvantages. Three specific limitations in existing platforms are identified from the perspective of natural hazard simulation. For mitigating the identified limitations, two platform design recommendations are provided, namely message exchange wrappers and hybrid communication, to help improve data passing capabilities in existing solutions and provide some guidance for the design of a new domain-specific distributed simulation framework.


2015 ◽  
Vol 35 (36) ◽  
pp. 12412-12424 ◽  
Author(s):  
A. Stigliani ◽  
K. S. Weiner ◽  
K. Grill-Spector

2021 ◽  
Vol 30 (6) ◽  
pp. 526-534
Author(s):  
Evelina Fedorenko ◽  
Cory Shain

Understanding language requires applying cognitive operations (e.g., memory retrieval, prediction, structure building) that are relevant across many cognitive domains to specialized knowledge structures (e.g., a particular language’s lexicon and syntax). Are these computations carried out by domain-general circuits or by circuits that store domain-specific representations? Recent work has characterized the roles in language comprehension of the language network, which is selective for high-level language processing, and the multiple-demand (MD) network, which has been implicated in executive functions and linked to fluid intelligence and thus is a prime candidate for implementing computations that support information processing across domains. The language network responds robustly to diverse aspects of comprehension, but the MD network shows no sensitivity to linguistic variables. We therefore argue that the MD network does not play a core role in language comprehension and that past findings suggesting the contrary are likely due to methodological artifacts. Although future studies may reveal some aspects of language comprehension that require the MD network, evidence to date suggests that those will not be related to core linguistic processes such as lexical access or composition. The finding that the circuits that store linguistic knowledge carry out computations on those representations aligns with general arguments against the separation of memory and computation in the mind and brain.


Author(s):  
Maja Radović ◽  
Nenad Petrović ◽  
Milorad Tošić

The requirements of state-of-the-art curricula and teaching processes in medical education have brought both new and improved the existing assessment methods. Recently, several promising methods have emerged, among them the Comprehensive Integrative Puzzle (CIP), which shows great potential. However, the construction of such questions requires high efforts of a team of experts and is time-consuming. Furthermore, despite the fact that English language is accepted as an international language, for educational purposes there is also a need for representing data and knowledge in native language. In this paper, we present an approach for automatic generation of CIP assessment questions based on using ontologies for knowledge representation. In this way, it is possible to provide multilingual support in the teaching and learning process because the same ontological concept can be applied to corresponding language expressions in different languages. The proposed approach shows promising results indicated by dramatic speeding up of construction of CIP questions compared to manual methods. The presented results represent a strong indication that adoption of ontologies for knowledge representation may enable scalability in multilingual domain-specific education regardless of the language used. High level of automation in the assessment process proven on the CIP method in medical education as one of the most challenging domains, promises high potential for new innovative teaching methodologies in other educational domains as well.


2021 ◽  
Author(s):  
Nicholas M Blauch ◽  
Marlene Behrmann ◽  
David Plaut

Inferotemporal cortex (IT) in humans and other primates is topographically organized, with multiple domain-selective areas and other general patterns of functional organization. What factors underlie this organization, and what can this neural arrangement tell us about the mechanisms of high level vision? Here, we present an account of topographic organization involving a computational model with two components: 1) a feature-extracting encoder model of early visual processes, followed by 2) a model of high-level hierarchical visual processing in IT subject to specific biological constraints. In particular, minimizing the wiring cost on spatially organized feedforward and lateral connections within IT, combined with constraining the feedforward processing to be strictly excitatory, results in a hierarchical, topographic organization. This organization replicates a number of key properties of primate IT cortex, including the presence of domain-selective spatial clusters preferentially involved in the representation of faces, objects, and scenes, within-domain topographic organization such as animacy and indoor/outdoor distinctions, and generic spatial organization whereby the response correlation of pairs of units falls off with their distance. The model supports a view in which both domain-specific and domain-general topographic organization arise in the visual system from an optimization process that maximizes behavioral performance while minimizing wiring costs.


2016 ◽  
Author(s):  
Devin R. Berg ◽  
Tina Lee

Traditional engineering education often falls short when it comes to the inclusion of issues related to social justice, ethics, and globalization. While engineering programs are required to include ethics content for accreditation, most seem to rely primarily on general education electives, providing only a high-level overview and including the bare minimum in the program core. This can lead to an inconsistent student experience and minimal exposure to topics which are critically important for achieving worldwide equity and operating responsibly in the engineering workplace. Given the role that engineers play in economic development, this is unacceptable. It is therefore the responsibility of engineering educators to find a better way to shape the future of the engineering profession. This paper outlines the early efforts at integrating the topics of ethics, social justice, and social responsibility more directly into the engineering curriculum. This is approached from the perspectives of pedagogy, curriculum development, and service learning opportunities. It is within this context that the authors hope to influence students' awareness of and connection to social and environmental issues as well as the ethical frameworks they develop and carry with them into their professional careers. This paper centers around the creation and delivery of a new introductory engineering course combining liberal education topics and introductory engineering topics. This course also includes a substantial design project which incorporates a cultural engagement component through collaboration with international partners. The first offering of this new course revealed that, while some reservations persist, students found value in exploring what it means to be an engineer in a broader global context.


2006 ◽  
Vol 25 ◽  
pp. 17-74 ◽  
Author(s):  
S. Thiebaux ◽  
C. Gretton ◽  
J. Slaney ◽  
D. Price ◽  
F. Kabanza

A decision process in which rewards depend on history rather than merely on the current state is called a decision process with non-Markovian rewards (NMRDP). In decision-theoretic planning, where many desirable behaviours are more naturally expressed as properties of execution sequences rather than as properties of states, NMRDPs form a more natural model than the commonly adopted fully Markovian decision process (MDP) model. While the more tractable solution methods developed for MDPs do not directly apply in the presence of non-Markovian rewards, a number of solution methods for NMRDPs have been proposed in the literature. These all exploit a compact specification of the non-Markovian reward function in temporal logic, to automatically translate the NMRDP into an equivalent MDP which is solved using efficient MDP solution methods. This paper presents NMRDPP (Non-Markovian Reward Decision Process Planner), a software platform for the development and experimentation of methods for decision-theoretic planning with non-Markovian rewards. The current version of NMRDPP implements, under a single interface, a family of methods based on existing as well as new approaches which we describe in detail. These include dynamic programming, heuristic search, and structured methods. Using NMRDPP, we compare the methods and identify certain problem features that affect their performance. NMRDPP's treatment of non-Markovian rewards is inspired by the treatment of domain-specific search control knowledge in the TLPlan planner, which it incorporates as a special case. In the First International Probabilistic Planning Competition, NMRDPP was able to compete and perform well in both the domain-independent and hand-coded tracks, using search control knowledge in the latter.


2017 ◽  
Vol 20 (3) ◽  
pp. 2423-2437 ◽  
Author(s):  
Anam Nazir ◽  
Masoom Alam ◽  
Saif U. R. Malik ◽  
Adnan Akhunzada ◽  
Muhammad Nadeem Cheema ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document