scholarly journals CMTM5-v1, a four-transmembrane protein, presents a secreted form released via a vesicle-mediated secretory pathway

BMB Reports ◽  
2010 ◽  
Vol 43 (3) ◽  
pp. 182-187 ◽  
Author(s):  
Henan Li ◽  
Xiaohuan Guo ◽  
Luning Shao ◽  
Markus Plate ◽  
Xiaoning Mo ◽  
...  
1992 ◽  
Vol 118 (5) ◽  
pp. 1057-1070 ◽  
Author(s):  
B A Lee ◽  
D J Donoghue

An important question regarding autocrine transformation by v-sis is whether intracellularly activated PDGF receptors are sufficient to transform cells or whether activated receptor-ligand complexes are required at the cell surface. We have addressed this question by inhibiting cell surface transport of a membrane-anchored v-sis protein utilizing the ER retention signal of the adenoviral transmembrane protein E3/19K. A v-sis fusion protein containing this signal was retained within the cell and not transported to the cell surface as confirmed by immunofluorescent localization experiments. Also, proteolytic maturation of this protein was suppressed, indicating inefficient transport to post-Golgi compartments of the secretory pathway. When compared with v-sis proteins lacking a functional retention signal, the ER-retained protein showed a diminished ability to transform NIH 3T3 cells, as measured by the number and size of foci formed. In newly established cell lines, the ER-retained protein did not down-regulate PDGF receptors. However, continued passage of these cells selected for a fully transformed phenotype exhibiting downregulated PDGF receptors and proteolytically processed v-sis protein. These results indicate that productive autocrine interactions occur in a post-ER compartment of the secretory pathway. Transport of v-sis protein beyond the Golgi correlated with acquisition of the transformed phenotype. Furthermore, suramin treatment reversed transformation and upregulated the expression of cell surface PDGF receptors, suggesting an important role for receptor-ligand complexes localized to the cell surface.


2011 ◽  
Vol 282-283 ◽  
pp. 453-456
Author(s):  
Hua Zhong ◽  
Bao Ping Sun ◽  
Fang Ying Zhao

The amino acid sequence of Cation Diffusion Facilitator from Populus trichocarpa, Thlaspi goesingense, Arabidopsis lyrata subsp. Lyrata, Brassica juncea and Medicago sativa, registered in GenBank, were analyzed and researched by the bioinformatic tools in the several aspects, including hydrophobicity / hydrophilicity properties, post-translational modification, secondary structures prediction and transmembrane domain. The results showed that Cation Diffusion Facilitator is a hydrophobic and transmembrane protein, which exists in endoplasmic reticulum and other secretory pathway. The main motifs of predicted secondary structure of Cation Diffusion Facilitator are alpha helix and random coil.


Author(s):  
Zhi Feng ◽  
Ke Yang ◽  
José C. Pastor-Pareja

In the secretory pathway, the transfer of cargo from the ER to the Golgi involves dozens of proteins that localize at specific regions of the ER called ER exit sites (ERES), where cargos are concentrated preceding vesicular transport to the Golgi. Despite many years of research, we are missing crucial details of how this highly dynamic ER-Golgi interface is defined, maintained and functions. Mechanisms allowing secretion of large cargos such as the very abundant collagens are also poorly understood. In this context, Tango1, discovered in the fruit fly Drosophila and widely conserved in animal evolution, has received a lot of attention in recent years. Tango1, an ERES-localized transmembrane protein, is the single fly member of the MIA/cTAGE family, consisting in humans of TANGO1 and at least 14 different related proteins. After its discovery in flies, a specific role of human TANGO1 in mediating secretion of collagens was reported. However, multiple studies in Drosophila have demonstrated that Tango1 is required for secretion of all cargos. At all ERES, through self-interaction and interactions with other proteins, Tango1 aids ERES maintenance and tethering of post-ER membranes. In this review, we discuss discoveries on Drosophila Tango1 and put them in relation with research on human MIA/cTAGE proteins. In doing so, we aim to offer an integrated view of Tango1 function and the nature of ER-Golgi transport from an evolutionary perspective.


2020 ◽  
Author(s):  
Troy R Alva ◽  
Melanie Riera ◽  
Justin Chartron

Abstract Background: Eukaryotes use distinct networks of biogenesis factors to synthesize, fold, monitor, traffic, and secrete proteins. During heterologous expression, saturation of any of these networks may bottleneck titer and yield. To understand the flux through various routes into the early secretory pathway, we quantified the global and membrane-associated translatomes of Komagataella phaffii . Results: By coupling Ribo-seq with long-read mRNA sequencing, we generated a new annotation of protein-encoding genes. By using Ribo-seq with subcellular fractionation, we quantified demands on co- and posttranslational translocation pathways. During exponential growth in rich media, protein components of the cell-wall represent the greatest number of nascent chains entering the ER. Transcripts encoding the transmembrane protein PMA1 sequester more ribosomes at the ER membrane than any others. Comparison to Saccharomyces cerevisiae reveals conservation in the resources allocated by gene ontology, but variation in the diversity of gene products entering the secretory pathway. Conclusion: A subset of host proteins, particularly cell-wall components, impose the greatest biosynthetic demands in the early secretory pathway. These proteins are potential targets in strain engineering aimed at alleviating bottlenecks during heterologous protein production.


eLife ◽  
2013 ◽  
Vol 2 ◽  
Author(s):  
Bettina L Lee ◽  
Joanne E Moon ◽  
Jeffrey H Shu ◽  
Lin Yuan ◽  
Zachary R Newman ◽  
...  

UNC93B1, a multipass transmembrane protein required for TLR3, TLR7, TLR9, TLR11, TLR12, and TLR13 function, controls trafficking of TLRs from the endoplasmic reticulum (ER) to endolysosomes. The mechanisms by which UNC93B1 mediates these regulatory effects remain unclear. Here, we demonstrate that UNC93B1 enters the secretory pathway and directly controls the packaging of TLRs into COPII vesicles that bud from the ER. Unlike other COPII loading factors, UNC93B1 remains associated with the TLRs through post-Golgi sorting steps. Unexpectedly, these steps are different among endosomal TLRs. TLR9 requires UNC93B1-mediated recruitment of adaptor protein complex 2 (AP-2) for delivery to endolysosomes while TLR7, TLR11, TLR12, and TLR13 utilize alternative trafficking pathways. Thus, our study describes a mechanism for differential sorting of endosomal TLRs by UNC93B1, which may explain the distinct roles played by these receptors in certain autoimmune diseases.


2007 ◽  
Vol 81 (8) ◽  
pp. 3942-3948 ◽  
Author(s):  
Eva Mittler ◽  
Larissa Kolesnikova ◽  
Thomas Strecker ◽  
Wolfgang Garten ◽  
Stephan Becker

ABSTRACT The major protein constituents of the filoviral envelope are the matrix protein VP40 and the surface transmembrane protein GP. While VP40 is recruited to the sites of budding via the late retrograde endosomal transport route, GP is suggested to be transported via the classical secretory pathway involving the endoplasmic reticulum, Golgi apparatus, and trans-Golgi network until it reaches the plasma membrane where most filoviral budding takes place. Since both transport routes target the plasma membrane, it was thought that GP and VP40 join there to form the viral envelope. However, it was recently shown that, upon coexpression of both proteins, GP is partially recruited into peripheral VP40-enriched multivesicular bodies, which contained markers of the late endosome. Accumulation of GP and VP40 in this compartment was presumed to play an important role in the formation of the filoviral envelope. Using a domain-swapping approach, we were able to show that the transmembrane domain of GP was essential and sufficient for (i) partial recruitment of chimeric glycoproteins into VP40-enriched multivesicular bodies and (ii) incorporation into virus-like particles (VLPs) that were released upon expression of VP40. Only those chimeric glycoproteins which were targeted to VP40-enriched endosomal multivesicular bodies were subsequently recruited into VLPs. These data show that the transmembrane domain of GP is critical for the mixing of VP40 and GP in multivesicular bodies and incorporation of GP into the viral envelope. Results further suggest that trapping of GP in the VP40-enriched late endosomal compartment is important for the formation of the viral envelope.


2016 ◽  
Vol 27 (12) ◽  
pp. 1938-1947 ◽  
Author(s):  
Pengcheng Zhang ◽  
Randy Schekman

In addition to its role in forming vesicles from the endoplasmic reticulum (ER), the coat protein complex II (COPII) is also responsible for selecting specific cargo proteins to be packaged into COPII transport vesicles. Comparison of COPII vesicle formation in mammalian systems and in yeast suggested that the former uses more elaborate mechanisms for cargo recognition, presumably to cope with a significantly expanded repertoire of cargo that transits the secretory pathway. Using proTGFα, the transmembrane precursor of transforming growth factor α (TGFα), as a model cargo protein, we demonstrate in cell-free assays that at least one auxiliary cytosolic factor is specifically required for the efficient packaging of proTGFα into COPII vesicles. Using a knockout HeLa cell line generated by CRISPR/Cas9, we provide functional evidence showing that a transmembrane protein, Cornichon-1 (CNIH), acts as a cargo receptor of proTGFα. We show that both CNIH and the auxiliary cytosolic factor(s) are required for efficient recruitment of proTGFα to the COPII coat in vitro. Moreover, we provide evidence that the recruitment of cargo protein by the COPII coat precedes and may be distinct from subsequent cargo packaging into COPII vesicles.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Troy R. Alva ◽  
Melanie Riera ◽  
Justin W. Chartron

Abstract Background Eukaryotes use distinct networks of biogenesis factors to synthesize, fold, monitor, traffic, and secrete proteins. During heterologous expression, saturation of any of these networks may bottleneck titer and yield. To understand the flux through various routes into the early secretory pathway, we quantified the global and membrane-associated translatomes of Komagataella phaffii. Results By coupling Ribo-seq with long-read mRNA sequencing, we generated a new annotation of protein-encoding genes. By using Ribo-seq with subcellular fractionation, we quantified demands on co- and posttranslational translocation pathways. During exponential growth in rich media, protein components of the cell-wall represent the greatest number of nascent chains entering the ER. Transcripts encoding the transmembrane protein PMA1 sequester more ribosomes at the ER membrane than any others. Comparison to Saccharomyces cerevisiae reveals conservation in the resources allocated by gene ontology, but variation in the diversity of gene products entering the secretory pathway. Conclusion A subset of host proteins, particularly cell-wall components, impose the greatest biosynthetic demands in the early secretory pathway. These proteins are potential targets in strain engineering aimed at alleviating bottlenecks during heterologous protein production.


2021 ◽  
Vol 22 (15) ◽  
pp. 7971
Author(s):  
Béatrice Charreau

As a cellular interface between the blood and tissues, the endothelial cell (EC) monolayer is involved in the control of key functions including vascular tone, permeability and homeostasis, leucocyte trafficking and hemostasis. EC regulatory functions require long-distance communications between ECs, circulating hematopoietic cells and other vascular cells for efficient adjusting thrombosis, angiogenesis, inflammation, infection and immunity. This intercellular crosstalk operates through the extracellular space and is orchestrated in part by the secretory pathway and the exocytosis of Weibel Palade Bodies (WPBs), secretory granules and extracellular vesicles (EVs). WPBs and secretory granules allow both immediate release and regulated exocytosis of messengers such as cytokines, chemokines, extracellular membrane proteins, coagulation or growth factors. The ectodomain shedding of transmembrane protein further provide the release of both receptor and ligands with key regulatory activities on target cells. Thin tubular membranous channels termed tunneling nanotubes (TNTs) may also connect EC with distant cells. EVs, in particular exosomes, and TNTs may contain and transfer different biomolecules (e.g., signaling mediators, proteins, lipids, and microRNAs) or pathogens and have emerged as a major triggers of horizontal intercellular transfer of information.


Sign in / Sign up

Export Citation Format

Share Document