scholarly journals Upregulation of T-Cell-Specific Transcription Factor Expression in Pediatric T-Cell Acute Lymphoblastic Leukemia (T-ALL)

2012 ◽  
Vol 29 (4) ◽  
pp. 325-333 ◽  
Author(s):  
Muge Sayitoglu ◽  
Yucel Erbilgin ◽  
Ozden Hatirnaz ◽  
Inci Yildiz ◽  
Tiraje Celkan ◽  
...  
Blood ◽  
1992 ◽  
Vol 79 (5) ◽  
pp. 1327-1333 ◽  
Author(s):  
PD Aplan ◽  
DP Lombardi ◽  
GH Reaman ◽  
HN Sather ◽  
GD Hammond ◽  
...  

Abstract The SCL gene, initially discovered at the site of a translocation breakpoint associated with the development of a stem cell leukemia, encodes a protein that contains the highly conserved basic helix-loop- helix (bHLH) motif found in a large array of eukaryotic transcription factors. Recently, we have described a nonrandom, site-specific SCL rearrangement in several T-cell acute lymphoblastic leukemia (ALL) cell lines that juxtaposes SCL with a distinct transcribed locus, SIL. The SIL/SCL rearrangement was found in leukemic blasts from 11 of 70 (16%) newly diagnosed T-cell ALL patients, a prevalence substantially higher than that of the t(11;14) translocation, which has previously been reported as the most frequent nonrandom chromosomal abnormality in T- cell ALL. We did not detect the SIL/SCL rearrangement in the leukemic blasts from 30 patients with B-cell precursor ALL, indicating that the rearrangement was specific for T-cell ALL. Analysis of RNA from these patients indicated that an SIL/SCL fusion mRNA was formed, joining SIL and SCL in a head-to-tail fashion. The fusion occurs in the 5′ untranslated region (UTR) of both genes, preserving the SCL coding region. The net result of this rearrangement is that SCL mRNA expression becomes regulated by the SIL promoter, leading to inappropriate SCL expression. The resultant inappropriate expression of this putative transcription factor may then contribute to leukemic transformation in T-cell ALL.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 56-56
Author(s):  
Irene Riz ◽  
Kristin K. Baxter ◽  
Hyo Jung Lee ◽  
Reza Behnam ◽  
Teresa S. Hawley ◽  
...  

Abstract Homeodomain proteins (homeoproteins) have long been recognized as powerful transcriptional regulators. Inappropriate expression of these transcription factors often leads to major developmental malformations or malignant transformation. The in vitro DNA binding sites of homeoproteins are short sequences that are widely distributed throughout the genome and some canonical binding sites have been shown to be functionally important at distances >20 kb away from the nearest transcription start site. In addition to DNA-binding activity, several homeoproteins have been demonstrated to interact with chromatin-modifying enzymes. For example, we and others have reported that the TLX1 homeoprotein of T-cell acute lymphoblastic leukemia (T-ALL) inhibits the PP1/PP2A serine/threonine phosphatases (I. Riz and R.G. Hawley, Oncogene 24: 5561–5575, 2005) and more recently have found that TLX1 modulates histone/transcription factor acetyltransferase CBP activity (I. Riz et al., Oncogene 26: 4115–4123, 2007). PP1/PP2A and CBP are complex molecular machines integrating diverse regulatory pathways that impact on cell survival, proliferation and differentiation outcomes. Organogenesis and malignant transformation - despite obvious differences - share a common requirement for high-order cooperativity of transcription factors and transcriptional cofactors in regulating the expression of multiple sets of genes executing cell fate shifts. Targeting key regulatory nodes in order to coordinately regulate multiple genes is a common strategy of virus induced cell-transformation: accordingly, PP1/PP2A and CBP are targeted by transforming viral proteins. The Groucho/TLE (transducin-like Enhancer-of-split) family of corepressors are another example of master regulators of cell fate; for instance, it was reported that triggering the MAPK signaling cascade inactivates TLE corepressors leading to coordinated derepression of a large number of genes involved in cell proliferation. We now demonstrate that TLX1 interferes with TLE1 repressive function. By streptavidin affinity-based precipitation of biotinylated recombinant TLX1 protein (TLX1 fused to a biotinylation peptide) we show in vivo interaction of TLX1 and TLE1 in several different cell types, including human T-ALL and neuroblastoma cells. Interaction of TLX1 with TLE1 occurs via an Engrailed homology 1 (Eh1)-like domain as documented by GST pull-down assays and laser scanning confocal microscopy. Transient transfection experiments indicate that TLX1 prevents TLE1-mediated repression of reporter genes. Furthermore, in the context of endogenous chromatin structure, TLX1 derepresses the bHLH transcription factor gene, ACSL1(HASH1), a well characterized target of the HES1/TLE1 repressor complex. The process requires direct interaction of TLX1 with TLE1 and binding of TLX1 to DNA, since a point mutation in the Eh1-like motif or deletion of the third helix of the TLX1 homeodomain abrogated the effect. Additional data to be presented suggest a long-range mechanism of transcriptional regulation by TLX1: we propose that “transcriptional activation” by TLX1 (and, by analogy, other homeoproteins that interact with TLE corepressors) results in part from the chaperoned redistribution of TLE corepressors from proximal promoter regions of target genes to distal chromatin regulatory sites.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 9-9
Author(s):  
Irene Homminga ◽  
Rob Pieters ◽  
Anton Langerak ◽  
Johan de Rooi ◽  
Andrew Stubbs ◽  
...  

Abstract Abstract 9 To identify novel oncogenic pathways in T-cell acute lymphoblastic leukemia (T-ALL), we combined expression profiling of 117 pediatric patient samples and detailed molecular cytogenetic analyses. Using unsupervised and supervised analyses, we identified a T-ALL cluster that was associated with an immature immunophenotype (CD1−, CD4−, CD8−), frequent expression of CD34 and co-expression of the myeloid markers CD13/CD33. Patients in this cluster lacked any of the known oncogenic rearrangements, but ectopically expressed MEF2C, which was recently demonstrated as an important transcription factor for T-cell development1. Molecular-cytogenetic analyses including the Chromatine Conformation Capture on Chip (4C) method revealed novel rearrangements of the MEF2C locus at 5q14, rearrangement of transcription factors that target MEF2C (PU.1, NKX2-5, RUNX1) or MEF2C-associated cofactors (NCOA2/GRIP1) in about half of the patients in this cluster. Four out of the 6 rearrangements identified have never been observed before in human cancer. Nearly all of these patients in this cluster could be predicted by the early T-cell precursor (ETP) signature2 using PAM statistics. This indicates that MEF2C may represent the oncogene for ETP T-ALL, an entity that has been associated with poor outcome2. Inhibition of MEF2C in a cell line model system provoked relieve of developmental arrest, indicating that ectopic MEF2C expression blocks T-cell development at an early stage. We demonstrated that MEF2C is a transcriptional regulator for many differentially expressed genes that were associated with the immature cluster including LYL1 and LMO2. Although LYL1 has been suggested as potential oncogene for immature T-ALL cases3, oncogenic rearrangements were never identified in T-ALL cases with immature immunophenotype. Our data therefore imply that high expression of LYL1 (and LMO2) is part of a pathogenic pathway for immature T-ALL that is regulated by the MEF2C oncogene. 1 Stehling-Sun, S., Dade, J., Nutt, S. L., DeKoter, R. P. & Camargo, F. D. Regulation of lymphoid versus myeloid fate ’choice’ by the transcription factor Mef2c. Nat Immunol 10, 289–296, (2009). 2 Coustan-Smith, E. et al. Early T-cell precursor leukaemia: a subtype of very high-risk acute lymphoblastic leukaemia. Lancet Oncol 10, 147–156, (2009). 3 Ferrando, A. A. et al. Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell 1, 75–87 (2002). Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (15) ◽  
pp. 4169-4173 ◽  
Author(s):  
Alejandro Gutierrez ◽  
Alex Kentsis ◽  
Takaomi Sanda ◽  
Linda Holmfeldt ◽  
Shann-Ching Chen ◽  
...  

Abstract The BCL11B transcription factor is required for normal T-cell development, and has recently been implicated in the pathogenesis of T-cell acute lymphoblastic leukemia (T-ALL) induced by TLX overexpression or Atm deficiency. To comprehensively assess the contribution of BCL11B inactivation to human T-ALL, we performed DNA copy number and sequencing analyses of T-ALL diagnostic specimens, revealing monoallelic BCL11B deletions or missense mutations in 9% (n = 10 of 117) of cases. Structural homology modeling revealed that several of the BCL11B mutations disrupted the structure of zinc finger domains required for this transcription factor to bind DNA. BCL11B haploinsufficiency occurred across each of the major molecular subtypes of T-ALL, including early T-cell precursor, HOXA-positive, LEF1-inactivated, and TAL1-positive subtypes, which have differentiation arrest at diverse stages of thymocyte development. Our findings provide compelling evidence that BCL11B is a haploinsufficient tumor suppressor that collaborates with all major T-ALL oncogenic lesions in human thymocyte transformation.


2020 ◽  
Author(s):  
Saara Laukkanen ◽  
Laura Oksa ◽  
Atte Nikkilä ◽  
Juha Mehtonen ◽  
Petri Pölönen ◽  
...  

Blood ◽  
1992 ◽  
Vol 79 (5) ◽  
pp. 1327-1333 ◽  
Author(s):  
PD Aplan ◽  
DP Lombardi ◽  
GH Reaman ◽  
HN Sather ◽  
GD Hammond ◽  
...  

The SCL gene, initially discovered at the site of a translocation breakpoint associated with the development of a stem cell leukemia, encodes a protein that contains the highly conserved basic helix-loop- helix (bHLH) motif found in a large array of eukaryotic transcription factors. Recently, we have described a nonrandom, site-specific SCL rearrangement in several T-cell acute lymphoblastic leukemia (ALL) cell lines that juxtaposes SCL with a distinct transcribed locus, SIL. The SIL/SCL rearrangement was found in leukemic blasts from 11 of 70 (16%) newly diagnosed T-cell ALL patients, a prevalence substantially higher than that of the t(11;14) translocation, which has previously been reported as the most frequent nonrandom chromosomal abnormality in T- cell ALL. We did not detect the SIL/SCL rearrangement in the leukemic blasts from 30 patients with B-cell precursor ALL, indicating that the rearrangement was specific for T-cell ALL. Analysis of RNA from these patients indicated that an SIL/SCL fusion mRNA was formed, joining SIL and SCL in a head-to-tail fashion. The fusion occurs in the 5′ untranslated region (UTR) of both genes, preserving the SCL coding region. The net result of this rearrangement is that SCL mRNA expression becomes regulated by the SIL promoter, leading to inappropriate SCL expression. The resultant inappropriate expression of this putative transcription factor may then contribute to leukemic transformation in T-cell ALL.


2015 ◽  
Vol 39 (3) ◽  
pp. 342-347 ◽  
Author(s):  
Özlem Tüfekçi ◽  
Melis Kartal Yandım ◽  
Hale Ören ◽  
Gülersu İrken ◽  
Yusuf Baran

Sign in / Sign up

Export Citation Format

Share Document