scholarly journals Assessment of interspecific hybridization between wild beet Beta vulgaris L. subsp. maritima and cultivated sugar beet under Moroccan conditions

2021 ◽  
Vol 22 (2) ◽  
pp. 376-389
Author(s):  
Siham Oumouss ◽  
Ghizlane TOBI ◽  
Ilham RAHMOUNI ◽  
Hikmat TAHIRI ◽  
Yasmina EL BAHLOUL
Genome ◽  
2001 ◽  
Vol 44 (5) ◽  
pp. 846-855 ◽  
Author(s):  
Frank Gindullis ◽  
Daryna Dechyeva ◽  
Thomas Schmidt

We have constructed a sugar beet bacterial artificial chromosome (BAC) library of the chromosome mutant PRO1. This Beta vulgaris mutant carries a single chromosome fragment of 6-9 Mbp that is derived from the wild beet Beta procumbens and is transmitted efficiently in meiosis and mitosis. The library consists of 50 304 clones, with an average insert size of 125 kb. Filter hybridizations revealed that approximately 3.1% of the clones contain mitochondrial or chloroplast DNA. Based on a haploid genome size of 758 Mbp, the library represents eight genome equivalents. Thus, there is a greater than 99.96% probability that any sequence of the PRO1 genome can be found in the library. Approximately 0.2% of the clones hybridized with centromeric sequences of the PRO1 minichromosome. Using the identified BAC clones in fluorescence in situ hybridization experiments with PRO1 and B. procumbens chromosome spreads, their wild-beet origin and centromeric localization were demonstrated. Comparative Southern hybridization of pulsed-field separated PRO1 DNA and BAC inserts indicate that the centromeric region of the minichromosome is represented by overlapping clones in the library. Therefore, the PRO1 BAC library provides a useful tool for the characterization of a single plant centromere and is a valuable resource for sugar beet genome analysis.Key words: Beta vulgaris, BAC library, Beta procumbens minichromosome, centromere, FISH.


Author(s):  
E. Punithalingam

Abstract A description is provided for Uromyces betae[Uromyces beticola]. Information is included on the disease caused by the organism, its transmission, geographical distribution, and hosts. HOSTS: On sugar beet, beetroot, spinach beet, mangolds and wild beet (Beta vulgaris subsp. vulgaris, B. vulgaris subsp. maritima), Beta vulgaris, B. cycla, B. rapa. DISEASES: Beet rust. First appears as small, cinnamon brown pustules scattered over the lamina, which in susceptible plants quickly spreads over the entire foliage causing the older leaves to wilt, wither and die prematurely. The younger leaves remain erect but their blades become crumpled drooping and yellowish. Badly rusted plants with blisters on leaf blades and petiole finally collapse. GEOGRAPHICAL DISTRIBUTION: Africa (Algeria, Canary Is., Libya, Madeira, Morocco, S. Africa); Asia (Israel, Iran, U.S.S.R.); Australasia (Australia, New Zealand, Tasmania); Europe (Austria, Belgium, Bulgaria, Channel Islands, Czechoslovakia, Cyprus, Denmark, Finland, France, Germany, Greece, Great Britain, Holland, Hungary, Ireland, Italy, Latvia, Malta, Norway, Poland, Portugal, Rumania, Sardinia, Spain, Sweden, Switzerland, Turkey, U.S.S.R., Yugoslavia); N. America (Canada, Mexico, U.S.A.); S. America (Argentina, Bolivia, Chile, Uruguay). (C.M.I. Map No. 265) TRANSMISSION: Mainly by urediospores (McKay, 1952, 44, 566a). Overwinters on seed crop stecklings, clamped mangolds, groundkeeping beet and mangolds. Spores adhering to seed clusters helps to spread the disease. Reports from U.S.S.R. indicate that teliospores retain viability for 2 yrs. in store houses.


Molecules ◽  
2020 ◽  
Vol 25 (22) ◽  
pp. 5395
Author(s):  
Milan Skalicky ◽  
Jan Kubes ◽  
Hajihashemi Shokoofeh ◽  
Md. Tahjib-Ul-Arif ◽  
Pavla Vachova ◽  
...  

There are 11 different varieties of Beta vulgaris L. that are used in the food industry, including sugar beets, beetroots, Swiss chard, and fodder beets. The typical red coloration of their tissues is caused by the indole-derived glycosides known as betalains that were analyzed in hypocotyl extracts by UV/Vis spectrophotometry to determine the content of betacyanins (betanin) and of betaxanthins (vulgaxanthin I) as constituents of the total betalain content. Fields of beet crops use to be also infested by wild beets, hybrids related to B. vulgaris subsp. maritima or B. macrocarpa Guss., which significantly decrease the quality and quantity of sugar beet yield; additionally, these plants produce betalains at an early stage. All tested B. vulgaris varieties could be distinguished from weed beets according to betacyanins, betaxanthins or total betalain content. The highest values of betacyanins were found in beetroots ‘Monorubra’ (9.69 mg/100 mL) and ‘Libero’ (8.42 mg/100 mL). Other beet varieties contained less betacyanins: Sugar beet ‘Labonita’ 0.11 mg/100 mL; Swiss chard ‘Lucullus,’ 0.09 mg/100 mL; fodder beet ‘Monro’ 0.15 mg/100 mL. In contrast with weed beets and beetroots, these varieties have a ratio of betacyanins to betaxanthins under 1.0, but the betaxanthin content was higher in beetcrops than in wild beet and can be used as an alternative to non-red varieties. Stability tests of selected varieties showed that storage at 22 °C for 6 h, or at 7 °C for 24 h, did not significantly reduce the betalain content in the samples.


2008 ◽  
Vol 89 (5) ◽  
pp. 1314-1323 ◽  
Author(s):  
Soutaro Chiba ◽  
Masaki Miyanishi ◽  
Ida Bagus Andika ◽  
Hideki Kondo ◽  
Tetsuo Tamada

The RNA3-encoded p25 protein of beet necrotic yellow vein virus (BNYVV) is responsible for the production of rhizomania symptoms of sugar beet roots (Beta vulgaris subsp. vulgaris). Here, it was found that the presence of the p25 protein is also associated with the resistance response in rub-inoculated leaves of sugar beet and wild beet (Beta vulgaris subsp. maritima) plants. The resistance phenotype displayed a range of symptoms from no visible lesions to necrotic or greyish lesions at the inoculation site, and only very low levels of virus and viral RNA accumulated. The susceptible phenotype showed large, bright yellow lesions and developed high levels of virus accumulation. In roots after Polymyxa betae vector inoculation, however, no drastic differences in virus and viral RNA accumulation levels were found between plants with susceptible and resistant phenotypes, except at an early stage of infection. There was a genotype-specific interaction between BNYVV strains and two selected wild beet lines (MR1 and MR2) and sugar beet cultivars. Sequence analysis of natural BNYVV isolates and site-directed mutagenesis of the p25 protein revealed that 3 aa residues at positions 68, 70 and 179 are important in determining the resistance phenotype, and that host-genotype specificity is controlled by single amino acid changes at position 68. The mechanism of the occurrence of resistance-breaking BNYVV strains is discussed.


1995 ◽  
Vol 94 (2) ◽  
pp. 342-350 ◽  
Author(s):  
Steffen Lenzner ◽  
Kurt Zoglauer ◽  
Otto Schieder

Sign in / Sign up

Export Citation Format

Share Document