scholarly journals The Performance of Three Different Solar Panels for Solar Electricity Applying Solar Tracking Device under the Malaysian Climate Condition

2012 ◽  
Vol 2 (1) ◽  
Author(s):  
Azhar Ghazali M. ◽  
Abdul Malek Abdul Rahman
2014 ◽  
Vol 1006-1007 ◽  
pp. 805-810
Author(s):  
Wei Qu ◽  
Zhi Zhou ◽  
Guo Li Li ◽  
Wen Qiang Li ◽  
Peng Fei Wu

A novel solar tracking method based on field programmable gate array (FPGA) is proposed to improve the photoelectric conversion rate of the solar cell unit area. In this method, the sun angle tracking is utilized to track, and tracking solar panels reach the altitude angle azimuth tracking position. Then four voltage signals of photo resistor sensors is used to compare the north-south direction and east-west direction respectively, in order to micro adjust the solar panels to getting same point voltage, enabling to achieve accurate sunlight tracking and positioning. Experimental results show that this method can accurately track the tracking the sun, and it has improving solar absorption efficiency of the solar tracking device.


2018 ◽  
Vol 7 (2) ◽  
pp. 913
Author(s):  
Muhammed Sabri Salim

During the daily sun cycle, the falling rays are of varying intensity on the solar panel reducing the energy generated from it. This is evident in the energy production of solar panels that are installed on the slanted surfaces of homes scattered in the rain regions of the world. In this research, the reasons for the low efficiency of energy production of solar panels that are installed on the A-frame designs of homes were studied and solved. The design of an integrated tracking system is developed based on fuzzy logic control using an open source code that can be easily modified. The performance and characteristics of the solar tracking device are tested experimentally to test its suitability for use with slanted roofs homes. The integrated solar localization system offers economical and efficient solar monitoring, as well as open source programming, which allows for future improvements and changes. In addition, the single-axis fuzzy tracking system was good for moving both panels in less than five seconds towards the sun. The adoption of the proposed design provides an extremely accurate tracking system and therefore, maximizes the potential of power generated by the solar panel since it will meet the sun's rays from dawn to dusk. The economic effect of the proposed design is to approximately double the value of electrical power received compared to the fixed design.  


2014 ◽  
Vol 981 ◽  
pp. 522-525 ◽  
Author(s):  
Zhong Ran Zhang ◽  
Yuan Ma ◽  
Bo Jiao ◽  
Tong Liang Liu

A solar tracking device was designed in this paper. First, In order to determine the initial direction of the mechanism and the east, HMC5883L was used for measuring the magnetic field of earth. Then, the mechanism began to operate according to the solar position which was confirmed though the astronomical calculation. Finally, the azimuth and the elevation angle of solar were measured and corrected by HMC5883L and MPU6050 respectively. HMC5883L was calibrated by the ellipse fitting, which was obtained though the least square method. The horizontal error of HMC5883L was compensated. The experimental study was performed. And the results show that the solar tracking device has the characteristics of stable operation, high flexibility and low requirement of installation precision.


Author(s):  
Jae-Hyeon Han ◽  
Chae-Joo Moon ◽  
Young-Hak Chang ◽  
Man-Soo Choi ◽  
Young-Gon Kim ◽  
...  

Author(s):  
Jay Dipak Betai ◽  
Hong Zhou

Abstract Solar trackers make solar panels perpendicular to solar ray to enhance solar power reaping. The relative motion between Sun and Earth has two degrees of freedom. Sun travels from east to west during daytime and also moves north and south due to Earth’s tilt. However, Sun’s daily north-south move is much smaller than its east-west move. Sensor-based solar trackers make solar panels perpendicular to solar ray based on sensor information. Although the existing sensor-based solar trackers increase solar power reaping from solar panels significantly, they also consume considerable power by driving solar trackers. Sensorless solar trackers make solar panels perpendicular to solar ray based on calculated solar location. The performance of sensorless solar trackers is not affected by bad weather. This paper is on sensorless solar trackers. Single-axis solar trackers have one degree of freedom solar tracking motion. They can catch Sun’s daily east-west movement effectively. The Sun’s small north-south movement can be covered for single-axis solar trackers by monthly or seasonal adjustment of their orientations. This research is focused on single-axis sensorless solar trackers that are driven by linear actuators. The advantages of linear actuator driven solar trackers are their self-locking function and high load carrying capacity. Their challenges include limited solar panel motion range, potential interference between an oscillating solar panel and its fixed supporting ground link, and high motor power consumption for solar tracking. The research of this paper is motivated by surmounting the challenges facing sensorless single-axis linear actuator driven solar trackers. In this research, linear actuator driven solar trackers will be designed and analyzed. The models of the designed solar trackers will be developed. The kinematic and dynamic performances of the modeled solar trackers will be analyzed and simulated. The results of this research will provide some guidelines for developing linear actuator driven solar trackers.


Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5226
Author(s):  
Nurzhigit Kuttybay ◽  
Ahmet Saymbetov ◽  
Saad Mekhilef ◽  
Madiyar Nurgaliyev ◽  
Didar Tukymbekov ◽  
...  

Improving the efficiency of solar panels is the main task of solar energy generation. One of the methods is a solar tracking system. One of the most important parameters of tracking systems is a precise orientation to the Sun. In this paper, the performance of single-axis solar trackers based on schedule and light dependent resistor (LDR) photosensors, as well as a stationary photovoltaic installation in various weather conditions, were compared. A comparative analysis of the operation of a manufactured schedule solar tracker and an LDR solar tracker in different weather conditions was performed; in addition, a simple method for determining the rotation angle of a solar tracker based on the encoder was proposed. Finally, the performance of the manufactured solar trackers was calculated, taking into account various weather conditions for one year. The proposed single-axis solar tracker based on schedule showed better results in cloudy and rainy weather conditions. The obtained results can be used for designing solar trackers in areas with a variable climate.


2012 ◽  
Vol 608-609 ◽  
pp. 70-73
Author(s):  
Jun Feng Zhu ◽  
Yue Wen Liu ◽  
Wen Bing Liu

In order to improve the solar energy utilization, in the respect of technology, we should perfect solar tracking devices, realization of the sunlight is always vertical to the solar panels. This paper is to design a kind of solar automatic tracking system. Design adopts the traditional photoelectric tracking method, with the FPGA as the core, and by using the methods of scheduled monitoring, achieve precise control of stepping motor, thereby promoting the solar panels rotate remains vertical to the sun, which can effectively improve the efficiency of solar power systems.


Sign in / Sign up

Export Citation Format

Share Document