scholarly journals Effects of Land Use, Soil Depth and Topography on Soil Physicochemical Properties along the Toposequence at the Wadla Delanta Massif, Northcentral Highlands of Ethiopia

2016 ◽  
Vol 5 (2) ◽  
pp. 57 ◽  
Author(s):  
Nahusenay Abate ◽  
Kibebew Kibret

The study was conducted to investigate the effects of land use, depth and topography on soil physicochemical properties at the Wadla Delanta Massif, northcentral Ethiopia. Four land uses (natural forest, shrub, grazing and cultivated land), three soil depths (0-20, 20-40, 40-60 cm) and three topographic positions (upper, middle and lower) in three replications were considered for this study. A total of 108 composite samples were collected for laboratory analysis. The results show that particle size distribution was affected by the main effects of land use and soil depth; bulk and particle densities, total porosity, organic matter and total nitrogen contents, C:N ratio and available phosphorus were significantly affected by the interaction of land use by soil depth only, whereas, soil pH, electrical conductivity, exchangeable bases, cation exchange capacity, percent base saturation and extractable micronutrients were affected by the interaction effects of the three factors. Highest clay and bulk density were recorded at the bottom layer of the cultivated land soils, while the utmost porosity, organic matter and nitrogen contents, and available phosphorus were recorded at the surface layers of the natural forest land soils. Highest pH was at the bottom layer of the cultivated land at the three topographic positions. Highest exchangeable bases and cation exchange capacity were observed in the bottom layers of soils under the four land use types at the lower topographic position, whilst extractable micronutrients were recorded at the surface layers of the forest land soils at the upper topographic position. In general, most of the measured soil properties were measured better in forest than in other land use soils and the lower topographic positions than the upper and middle ones. Interaction of land use with topography showed negative effects especially on cultivated and grazing land soils in all topographic positions. Therefore, integrated soil fertility management and soil conservation measures are required in all topographic positions to maintain soil physicochemical properties.

2018 ◽  
Vol 7 (2) ◽  
pp. 30 ◽  
Author(s):  
Theobald Bizuhoraho ◽  
Alexis Kayiranga ◽  
Noel Manirakiza ◽  
Khaldoon A. Mourad

Land use change has a significant impact on the ecosystem. In this paper the effects of land use change on the physicochemical properties of the soil in Rulindo District, Rwanda have been studied. Three different land use types were selected; forestland, cattle farmland and cultivated land. A randomised complete block research design was used to carry out this research. Nine soil samples were collected and then analysed. The distributed samples were analysed in the Soil Laboratory of University of Rwanda-Busogo campus, while the undisturbed samples were analysed in-situ. Eight physicochemical properties were measured: pH, Organic Matter (OM), available nitrogen, available phosphorus, exchangeable potassium, soil bulk density, moisture content and porosity. The results showed that changing land use from forest or farm to cultivated land reduced the organic matter, available nitrogen, soil moisture and porosity while bulk density and pH were significantly increasing. On the other hand, the exchangeable potassium and exchangeable phosphorus did not change significantly for the both land use changes. Hence, the reduction of forestland and farmland are highly sensible to erosion and will decline soil fertility. The paper proposed few steps and recommendations to be the base for a new sustainable land use management in Rwanda.


Author(s):  
Nsengimana Venuste

Different tree speciesare blamed to have negative effects on soil ecosystems by changing soil physicochemical properties, and hence soil quality. However, few researches to verify this statement were done in Rwanda. This study provides prior information on the effects of planted forest tree species on soil physicochemical properties. It was conducted in the Arboretum of Ruhande, in southern Rwanda. Soil cores were collected in plots of exotic, native and agroforestry tree species. Collected soils were analysed for soil pH, total nitrogen, organic carbon, available phosphorus,  aggregate stability, bulk density, soil humidity, cation exchange capacity, and soil texture. Soils sampled under exotic tree species were acidic, richin soil organic carbon, and in soil available phosphorus. Native and agroforestry tree species offer better conditions in soil pH, soil water content, cation exchange capacity, clay and silt. Less variations in soil total nitrogen and soil bulk density were found in soils sampled under all studied forest types. Research concluded that studiedtree species have different effects on soil physicochemical parameters. It recommended further studies to generalize these findings. Key words: soil, exotic, native, agroforestry, soil properties


2020 ◽  
Vol 13 ◽  
pp. 117862212093958 ◽  
Author(s):  
Fikru Assefa ◽  
Eyasu Elias ◽  
Teshome Soromessa ◽  
Gebiaw T Ayele

Change in land-use management practices such as cultivation of steep slopes, overgrazing, and no or limited fallow periods, and slope position affects the quality of soils. As a result, assessing soil physicochemical properties and subsequent implications on soil fertility is essential for understanding the influence of agro-ecosystem revolution on agricultural soil quality and efficiency. In this research, we assessed the effect of land-use management practices on selected soil properties under varying terrain slopes and with and without soil conservation measures in a highly disturbed landscape in the northern part of Ethiopia in 2016. Based on the result, for all slope positions considered—namely, lower (1%-15%), middle (15%-30%), and upper (30%-45% and above)—with and without soil conservation, soil moisture content, porosity, silt, and clay proportions were lower in the cultivated land compared with grazing and forestland-use units. Conversely, soil bulk density and the sand fraction were higher in the cultivated land than grazing and forestland units, relatively. Observing changes in a terrain slope position, sand content of forest, grazing, and cultivated land units increased from lower to upper slope position whereas silt and clay fraction generally showed a decreasing trend from lower to an upper slope positions. In all slope positions with and without conservation practice, cation exchange capacity, exchangeable K+, Ca2+, and Mg2+ showed a significant increase from cultivated land to grazing and then forestland. The mean value of pH and electrical conductivity of cultivated lands with and without soil conservation were significantly low in all slope categories. Summarizing the analysis of variance for selected soil chemical properties with different slope positions, except available phosphorous, all chemical properties considered in this study are statistically significant ( P < .05). In summary, the result confirmed that soil properties were strongly influenced by terrain slope, land use, and changes in management practice. Consequently, to conserve soil resources, policymakers need to implement appropriate land conservation strategies based on land-use structure and slope variation.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Belayneh Bufebo ◽  
Eyasu Elias ◽  
Getachew Agegnehu

Abstract Background Understanding the effects of landscape positions on soil physicochemical properties is crucial for improving the soil productivity and to ensure the environmental sustainability. Three land use types forest land, grazing land and cultivated land all within upper, middle and lower landscape positions were selected to determine the effects of landscape positions, land use types and their interaction effects on soil physicochemical properties. Twenty seven soil samples were collected from lower landscape, middle landscape and upper landscape positions at the depth of 0–20 cm in nine replications. In addition, undisturbed soil samples were taken using core sampler from each land use type under upper, middle and lower landscape positions for the ascertainment of bulk density and water retentive capacity. The analysis of variance (ANOVA) was applied to determine variations in soil parameters among landscape positions and land use types. A Generalized Linear Models (GLMs) analysis was conducted to determine the influence of independent (fixed) factors, on the soil properties (response variables). Treatment means comparison was determined using the Least Significant Difference (LSD) at 0.05 level of significances. Results The result indicated that among the soil properties sand (p < 0.001), silt (p < 0.001), clay (p < 0.001), bulk density (p < 0.01), water holding capacity at FC (p < 0.001), water retention at PWP (p < 0.01), Available water content (AWC) (p < 0.01), soil reaction (pH) (p < 0.05), Soil organic carbon (SOC%) (p < 0.01), Total nitrogen (TN%) (p < 0.01), available phosphorus (p < 0.05) and CEC (p < 0.001) have shown a significant variation among the landscape categories. Similarly, variation of sand (p < 0.001), silt (p < 0.001), clay (p < 0.001), bulk density (p < 0.01), water holding capacity at FC (p < 0.001), water retention at PWP (p < 0.001), Available water content (AWC) (p < 0.01), soil reaction (pH) (p < 0.01), SOC (p < 0.01), TN (p < 0.001) available phosphorus (AP) (p < 0.001) and CEC (p < 0.001) were also statistically significant among the land use types. Moreover, lower landscape position and forest land had high mean value of SOC, TN, AP, CEC, EB (exchangeable bases), and available micronutrients, whereas upper landscape position and intensively cultivated land had low mean value of SOC, TN, AP, CEC, EB (exchangeable bases), and available micronutrients. Conclusion Landscape positions, land use types and interaction effects of landscape position and land use types (LSP * LU) significantly affected soil properties. Soil with best quality was found in lower landscape position and forest land, while less quality of soil was found in upper landscape position and cultivated land. Thus, efforts should be made to improve the quality of soil under upper landscape position and cultivated land using biological and physical soil conservation measures.


Land ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 142 ◽  
Author(s):  
Yan Xu ◽  
Lijie Pu ◽  
Runsen Zhang ◽  
Ming Zhu ◽  
Meng Zhang ◽  
...  

Agricultural reclamation in coastal zones is effective for mitigating population pressure on the food supply. Soil properties are important factors influencing crop production in reclaimed coastal lands. This study aims to investigate the impacts of time and land use trajectories on soil physicochemical properties after reclamation. We sampled soils in areas that were reclaimed in 1999, 1998, 1991, 1989, 1986, 1981, and 1979 and determined some soil physicochemical properties such as electrical conductivity with a 1:5 soil:water ratio (EC1:5), exchange sodium percentage (ESP), sodium adsorption ratio (SAR), pH, organic matter (OM), total nitrogen (TN), alkaline hydrolyzable nitrogen (AN), cation exchange capacity (CEC), total phosphorus (TP), available phosphorus (TP) and soil particle size ratio. We analyzed their correlation with land use and the time since reclamation using one-way analysis of variance (ANOVA) and principal component analysis (PCA). The results showed that soil physicochemical properties changed significantly after agricultural reclamation. Soil EC1:5, ESP, and SAR declined rapidly, and OM, TN, and AN increased rapidly during the 29 years after reclamation. The soil particle size ratio was not significantly correlated with reclamation time. The land-use trajectories identified after reclamation had obvious effects on soil physicochemical properties. Aquaculture ponds were superior to cultivated land in terms of decreasing soil salinity but were inferior in terms of soil nutrient accumulation. In the future, more attention should be given to the environmental effects of agricultural reclaimed soils.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2617
Author(s):  
Alicja Szatanik-Kloc ◽  
Justyna Szerement ◽  
Agnieszka Adamczuk ◽  
Grzegorz Józefaciuk

Thousands of tons of zeolitic materials are used yearly as soil conditioners and components of slow-release fertilizers. A positive influence of application of zeolites on plant growth has been frequently observed. Because zeolites have extremely large cation exchange capacity, surface area, porosity and water holding capacity, a paradigm has aroused that increasing plant growth is caused by a long-lasting improvement of soil physicochemical properties by zeolites. In the first year of our field experiment performed on a poor soil with zeolite rates from 1 to 8 t/ha and N fertilization, an increase in spring wheat yield was observed. Any effect on soil cation exchange capacity (CEC), surface area (S), pH-dependent surface charge (Qv), mesoporosity, water holding capacity and plant available water (PAW) was noted. This positive effect of zeolite on plants could be due to extra nutrients supplied by the mineral (primarily potassium—1 ton of the studied zeolite contained around 15 kg of exchangeable potassium). In the second year of the experiment (NPK treatment on previously zeolitized soil), the zeolite presence did not impact plant yield. No long-term effect of the zeolite on plants was observed in the third year after soil zeolitization, when, as in the first year, only N fertilization was applied. That there were no significant changes in the above-mentioned physicochemical properties of the field soil after the addition of zeolite was most likely due to high dilution of the mineral in the soil (8 t/ha zeolite is only ~0.35% of the soil mass in the root zone). To determine how much zeolite is needed to improve soil physicochemical properties, much higher zeolite rates than those applied in the field were studied in the laboratory. The latter studies showed that CEC and S increased proportionally to the zeolite percentage in the soil. The Qv of the zeolite was lower than that of the soil, so a decrease in soil variable charge was observed due to zeolite addition. Surprisingly, a slight increase in PAW, even at the largest zeolite dose (from 9.5% for the control soil to 13% for a mixture of 40 g zeolite and 100 g soil), was observed. It resulted from small alterations of the soil macrostructure: although the input of small zeolite pores was seen in pore size distributions, the larger pores responsible for the storage of PAW were almost not affected by the zeolite addition.


Author(s):  
G. O. Ateh ◽  
M. G. Saka ◽  
E. E. Dishan ◽  
B. B. Meer

This study evaluated the relationship between selected physicochemical properties and microbial populations of the soil of Bagale Forest Reserve, Girei Local Government Area of Adamawa State, Nigeria. Five plots of 20 x 20 m were laid. Soil samples were collected from five different positions at two soil depths of 0-15 cm and 15-30 cm. The soil samples were isolated in the laboratory for microbial populations and determination of physical and chemical properties. The results obtained revealed that fungal population (7.65 x 105 cfu/ml) was the highest at the soil depth of 0-15 cm, representing 39% of the total microbial populations in the sampled soil of the study area. The results further revealed that the population (6.84 x 105 cfu/ml) of the bacteria had a positive effect on soils of the study area in terms of nitrogen fixation by Rhizobacterial spp. Chemical properties of the soil samples revealed that the available phosphorus exhibited the highest percentage (61.7%) at 0-15 cm soil depth. Analyses of soil physical properties recorded the highest percentage (49.0%) of sand at 0-15 cm soil depth. A similar percentage (50.0%) of sand was exhibited at the depth of 15-30 cm. These percentages accounted for the high porosity (29.0%) of the soil observed at the two soil levels in the study area and could be improved through the application of lime fertilizers. Application of appropriate fertilizers like NPK to improve the soil condition of the study area is highly recommended.


Sign in / Sign up

Export Citation Format

Share Document