scholarly journals The Effect of Land Use Systems on Soil Properties; A case study from Rwanda

2018 ◽  
Vol 7 (2) ◽  
pp. 30 ◽  
Author(s):  
Theobald Bizuhoraho ◽  
Alexis Kayiranga ◽  
Noel Manirakiza ◽  
Khaldoon A. Mourad

Land use change has a significant impact on the ecosystem. In this paper the effects of land use change on the physicochemical properties of the soil in Rulindo District, Rwanda have been studied. Three different land use types were selected; forestland, cattle farmland and cultivated land. A randomised complete block research design was used to carry out this research. Nine soil samples were collected and then analysed. The distributed samples were analysed in the Soil Laboratory of University of Rwanda-Busogo campus, while the undisturbed samples were analysed in-situ. Eight physicochemical properties were measured: pH, Organic Matter (OM), available nitrogen, available phosphorus, exchangeable potassium, soil bulk density, moisture content and porosity. The results showed that changing land use from forest or farm to cultivated land reduced the organic matter, available nitrogen, soil moisture and porosity while bulk density and pH were significantly increasing. On the other hand, the exchangeable potassium and exchangeable phosphorus did not change significantly for the both land use changes. Hence, the reduction of forestland and farmland are highly sensible to erosion and will decline soil fertility. The paper proposed few steps and recommendations to be the base for a new sustainable land use management in Rwanda.

Author(s):  
Kelsey Watts

Soils play a critical role to society as a medium that facilitates crop production and also contributes to the energy and carbon balance of the Earth System. Land-use change and improper land-use is one of the dominant factors affecting soil erosion and nutrient loss in soils. We examined the effects of land-use change on an Elmbrook clay/clay-loam soil on a farm in Ameliasburg on the northern part of Prince Edward County. Three cover types were examined: a sod field (established for over 10 years), a wheat field (part of a wheat/corn/soybean rotation for 30 years) and an undisturbed deciduous forest. Under each land-use type, cores to a depth of 40 cm were collected along three random 30 m transects (at 8, 16 and 24 m), then divided them into 10 cm increments, combining all similar depth increments along one transect. Soil quality was assessed by analyzing various soil physical and chemical properties. Bulk density of the soil was much higher (1.55 vs. 0.95 g/cm3) in both agricultural ecosystems compared to the forest, but only in the 0-10 cm layer. Soil moisture at 60% water holding capacity was much greater for the forest than the sod and wheat soils. Soil pH was slightly lower in the forest compared to the sod and wheat fields. The sod and wheat fields showed losses of ~52% and ~53% organic matter, respectively, in contrast to the forested area. The greatest differences in organic matter and total carbon were found in the top 10 cm, likely due to the greater accumulation of litter at the ground surface in the forest compared to the agricultural sites. It appears that long-term (10 year) agricultural production has led to a decline in some, but not all, soil quality measures, particularly soil organic matter, bulk density and water holding capacity. These findings are consistent with much of the literature concerning the effects of land-use change on soil quality, and highlight the need to develop improved management systems to minimize losses in soil quality that can lead to declines in the productivity potential of soils over time.


Author(s):  
H. Haruna

Land use changes from forest into cultivated ecosystems result in negative impact on soil structure and quality. The purpose of this study was to determine effect of land use on soil quality in Afaka forest northern guinea savannah of Nigeria. Land use systems, including natural forest and cultivated land were identified. Eighteen (18) composite disturbed and undisturbed samples were collected from depth of 0-5 and 5-10 cm for analysis of pertinent soil properties in the laboratory using grid procedure. Most physical and chemical properties show relative variations in response to land use types and geomorphic positions. Results  indicate  that the soils had  high degree of weathering potentials, low  to moderate  bulk density at 0-5cm depth values between 1.42 to 1.49 Mg m-3 in  forest and  cultivated land, bulk density of  1.34 and 1.46 1.Mg m-3at 5 -1ocm depth   for forest and  cultivated land respectively. The soil water at 0-5cm depth is from 4.20 to 2.63 cm3/cm3, while at 5-10 cm depth these values vary from 4.32 to 2.13 cm3/cm3 under forest and cultivation land use. The pH (H2O) is 6.9 to 7.16 with low electrical conductivity of 0.13 dS/m(forest) and 0.12 dS/m (cultivation). The CEC of soils is recorded as 8.60 cmol kg-1 (forest) to 8.54 cmol kg-1 (cultivated)whereas  total nitrogen content of 1.21 g kg-1 and 1.11 g kg-1 and available phosphorus of 8.78 mg kg-1 (cultivated) and 5.47 mg kg-1 (forest).. Results indicate that soil fertility parameters were moderate to low for cultivated land and at all slope positions, suggesting that soil fertility management is required in order to make agriculture sustainable on Afaka area.


2016 ◽  
Vol 5 (2) ◽  
pp. 57 ◽  
Author(s):  
Nahusenay Abate ◽  
Kibebew Kibret

The study was conducted to investigate the effects of land use, depth and topography on soil physicochemical properties at the Wadla Delanta Massif, northcentral Ethiopia. Four land uses (natural forest, shrub, grazing and cultivated land), three soil depths (0-20, 20-40, 40-60 cm) and three topographic positions (upper, middle and lower) in three replications were considered for this study. A total of 108 composite samples were collected for laboratory analysis. The results show that particle size distribution was affected by the main effects of land use and soil depth; bulk and particle densities, total porosity, organic matter and total nitrogen contents, C:N ratio and available phosphorus were significantly affected by the interaction of land use by soil depth only, whereas, soil pH, electrical conductivity, exchangeable bases, cation exchange capacity, percent base saturation and extractable micronutrients were affected by the interaction effects of the three factors. Highest clay and bulk density were recorded at the bottom layer of the cultivated land soils, while the utmost porosity, organic matter and nitrogen contents, and available phosphorus were recorded at the surface layers of the natural forest land soils. Highest pH was at the bottom layer of the cultivated land at the three topographic positions. Highest exchangeable bases and cation exchange capacity were observed in the bottom layers of soils under the four land use types at the lower topographic position, whilst extractable micronutrients were recorded at the surface layers of the forest land soils at the upper topographic position. In general, most of the measured soil properties were measured better in forest than in other land use soils and the lower topographic positions than the upper and middle ones. Interaction of land use with topography showed negative effects especially on cultivated and grazing land soils in all topographic positions. Therefore, integrated soil fertility management and soil conservation measures are required in all topographic positions to maintain soil physicochemical properties.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Belayneh Bufebo ◽  
Eyasu Elias ◽  
Getachew Agegnehu

Abstract Background Understanding the effects of landscape positions on soil physicochemical properties is crucial for improving the soil productivity and to ensure the environmental sustainability. Three land use types forest land, grazing land and cultivated land all within upper, middle and lower landscape positions were selected to determine the effects of landscape positions, land use types and their interaction effects on soil physicochemical properties. Twenty seven soil samples were collected from lower landscape, middle landscape and upper landscape positions at the depth of 0–20 cm in nine replications. In addition, undisturbed soil samples were taken using core sampler from each land use type under upper, middle and lower landscape positions for the ascertainment of bulk density and water retentive capacity. The analysis of variance (ANOVA) was applied to determine variations in soil parameters among landscape positions and land use types. A Generalized Linear Models (GLMs) analysis was conducted to determine the influence of independent (fixed) factors, on the soil properties (response variables). Treatment means comparison was determined using the Least Significant Difference (LSD) at 0.05 level of significances. Results The result indicated that among the soil properties sand (p < 0.001), silt (p < 0.001), clay (p < 0.001), bulk density (p < 0.01), water holding capacity at FC (p < 0.001), water retention at PWP (p < 0.01), Available water content (AWC) (p < 0.01), soil reaction (pH) (p < 0.05), Soil organic carbon (SOC%) (p < 0.01), Total nitrogen (TN%) (p < 0.01), available phosphorus (p < 0.05) and CEC (p < 0.001) have shown a significant variation among the landscape categories. Similarly, variation of sand (p < 0.001), silt (p < 0.001), clay (p < 0.001), bulk density (p < 0.01), water holding capacity at FC (p < 0.001), water retention at PWP (p < 0.001), Available water content (AWC) (p < 0.01), soil reaction (pH) (p < 0.01), SOC (p < 0.01), TN (p < 0.001) available phosphorus (AP) (p < 0.001) and CEC (p < 0.001) were also statistically significant among the land use types. Moreover, lower landscape position and forest land had high mean value of SOC, TN, AP, CEC, EB (exchangeable bases), and available micronutrients, whereas upper landscape position and intensively cultivated land had low mean value of SOC, TN, AP, CEC, EB (exchangeable bases), and available micronutrients. Conclusion Landscape positions, land use types and interaction effects of landscape position and land use types (LSP * LU) significantly affected soil properties. Soil with best quality was found in lower landscape position and forest land, while less quality of soil was found in upper landscape position and cultivated land. Thus, efforts should be made to improve the quality of soil under upper landscape position and cultivated land using biological and physical soil conservation measures.


Author(s):  
Claudia Wheler

Changes in land management can have a significant impact on soil quality, which can change the capacity of land to provide essential services to society. We explored the impact of land-use change and land management on an organic farm near Seeley’s Bay, Ontario on a Gananoque Clay soil. Three replicate soil samples were collected to a depth of 40cm (10 cm increments) from a native forest (never cultivated), a field producing hay for over 10 years, and a tilled field used to grow a variety of vegetables. The soils were analyzed by the entire class (GPHY 317) for bulk density, particle-size distribution, organic matter content, pH, soil colour, microbial biomass, and microbial activity. After reviewing the results, we found thegreatest decline in soil quality (using the forest soil as a “reference” for the area) was the tilled field for vegetable production. The tilled site had a higher average bulk density of 1.34g/cc compared to forests bulk density of 0.88g/cc. The forest had a higher average organic matter content of 5% versus an average of 4% found at the tilled site. Additionally, the tilled site had a higher pH (5.8 vs. 4.9) likely due to intermittent liming, and lower water holding capacity. The compilation of the results illustrates the true affects land-management has on soil quality. By understanding the impacts of different land-use methods society can modify current practices to help increase soil quality and prevent the loss of the critical services that healthy soil provides to society. 


2012 ◽  
Vol 573-574 ◽  
pp. 331-336
Author(s):  
Shi Dong Liu ◽  
Dong Qian Xue ◽  
Jun Gao

Research of the impact of tourism activities on the soil has been a focus in domestic and foreign environmental impact research. Targeted at spatial heterogeneity that domestic and foreign soil environment impact research seldom touches, this paper took Dongping Forest Park on Shanghai Chongming Island as a sample land and made Chongming Forest Tourism Festival the major driving factor. Through comparative analysis of bulk density, organic matter of soil and soil available nutrient before and after the festival, the paper adopted PCA ranking to study the spatial distribution and law of heterogeneity of soil environment evolution in Dongping Forest Park under the impact of human tourism activities, and concluded that: (1) bulk density, organic matter, available nitrogen and available phosphorus showed regular changes, but the change of available potassium was not evidently regular. (2) As for the impact strength on large spatial scale, active area>buffer area>background area; and from the aspect of sample land scale, the sample lands of floating bridge and stage performances in the active area were under the greatest impact from tourists, while amusement park and tea house were not so strongly affected; the flower viewing2 sample land in buffer area was more affected than the flower viewing3 sample land; the background area was the least affected. (3) Bulk density, organic matter and available nitrogen in sample lands show regular changes in spatial heterogeneity, while the change of available phosphorus and available potassium was not regular enough. The impact of tourism activities on overall spatial heterogeneity of soil showed a homogeneity tendency.


Author(s):  
Qinglong Ding ◽  
Yang Chen ◽  
Lingtong Bu ◽  
Yanmei Ye

The past decades were witnessing unprecedented habitat degradation across the globe. It thus is of great significance to investigate the impacts of land use change on habitat quality in the context of rapid urbanization, particularly in developing countries. However, rare studies were conducted to predict the spatiotemporal distribution of habitat quality under multiple future land use scenarios. In this paper, we established a framework by coupling the future land use simulation (FLUS) model with the Intergrated Valuation of Environmental Services and Tradeoffs (InVEST) model. We then analyzed the habitat quality change in Dongying City in 2030 under four scenarios: business as usual (BAU), fast cultivated land expansion scenario (FCLE), ecological security scenario (ES) and sustainable development scenario (SD). We found that the land use change in Dongying City, driven by urbanization and agricultural reclamation, was mainly characterized by the transfer of cultivated land, construction land and unused land; the area of unused land was significantly reduced. While the habitat quality in Dongying City showed a degradative trend from 2009 to 2017, it will be improved from 2017 to 2030 under four scenarios. The high-quality habitat will be mainly distributed in the Yellow River Estuary and coastal areas, and the areas with low-quality habitat will be concentrated in the central and southern regions. Multi-scenario analysis shows that the SD will have the highest habitat quality, while the BAU scenario will have the lowest. It is interesting that the ES scenario fails to have the highest capacity to protect habitat quality, which may be related to the excessive saline alkali land. Appropriate reclamation of the unused land is conducive to cultivated land protection and food security, but also improving the habitat quality and giving play to the versatility and multidimensional value of the agricultural landscape. This shows that the SD of comprehensive coordination of urban development, agricultural development and ecological protection is an effective way to maintain the habitat quality and biodiversity.


Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 616
Author(s):  
Jie Gao ◽  
Xuguang Tang ◽  
Shiqiu Lin ◽  
Hongyan Bian

The ecosystem services (ESs) provided by mountain regions can bring about benefits to people living in and around the mountains. Ecosystems in mountain areas are fragile and sensitive to anthropogenic disturbance. Understanding the effect of land use change on ESs and their relationships can lead to sustainable land use management in mountain regions with complex topography. Chongqing, as a typical mountain region, was selected as the site of this research. The long-term impacts of land use change on four key ESs (i.e., water yield (WY), soil conservation (SC), carbon storage (CS), and habitat quality (HQ)) and their relationships were assessed from the past to the future (at five-year intervals, 1995–2050). Three future scenarios were constructed to represent the ecological restoration policy and different socioeconomic developments. From 1995 to 2015, WY and SC experienced overall increases. CS and HQ increased slightly at first and then decreased significantly. A scenario analysis suggested that, if the urban area continues to increase at low altitudes, by 2050, CS and HQ are predicted to decrease moderately. However, great improvements in SC, HQ, and CS are expected to be achieved by the middle of the century if the government continues to make efforts towards vegetation restoration on the steep slopes.


Author(s):  
Allison Neil

Soil properties are strongly influenced by the composition of the surrounding vegetation. We investigated soil properties of three ecosystems; a coniferous forest, a deciduous forest and an agricultural grassland, to determine the impact of land use change on soil properties. Disturbances such as deforestation followed by cultivation can severely alter soil properties, including losses of soil carbon. We collected nine 40 cm cores from three ecosystem types on the Roebuck Farm, north of Perth Village, Ontario, Canada. Dominant species in each ecosystem included hemlock and white pine in the coniferous forest; sugar maple, birch and beech in the deciduous forest; grasses, legumes and herbs in the grassland. Soil pH varied little between the three ecosystems and over depth. Soils under grassland vegetation had the highest bulk density, especially near the surface. The forest sites showed higher cation exchange capacity and soil moisture than the grassland; these differences largely resulted from higher organic matter levels in the surface forest soils. Vertical distribution of organic matter varied greatly amongst the three ecosystems. In the forest, more of the organic matter was located near the surface, while in the grassland organic matter concentrations varied little with depth. The results suggest that changes in land cover and land use alters litter inputs and nutrient cycling rates, modifying soil physical and chemical properties. Our results further suggest that conversion of forest into agricultural land in this area can lead to a decline in soil carbon storage.


Author(s):  
Trina Stephens

Land‐use change can have a major impact on soil properties, leading to long‐term changes in soilnutrient cycling rates and carbon storage. While a substantial amount of research has been conducted onland‐use change in tropical regions, empirical evidence of long‐term conversion of forested land toagricultural land in North America is lacking. Pervasive deforestation for the sake of agriculturethroughout much of North America is likely to have modified soil properties, with implications for theglobal climate. Here, we examined the response of physical, chemical and biological soil properties toconversion of forest to agricultural land (100 years ago) on Roebuck Farm near Perth, Ontario, Canada.Soil samples were collected at three sites from under forest and agricultural vegetative cover on bothhigh‐ and low‐lying topographic positions (12 locations in total; soil profile sampled to a depth of 40cm).Our results revealed that bulk density, pH, and nitrate concentrations were all higher in soils collectedfrom cultivate sites. In contrast, samples from forested sites exhibited greater water‐holding capacity,porosity, organic matter content, ammonia concentrations and cation exchange capacity. Many of these characteristics are linked to greater organic matter abundance and diversity in soils under forestvegetation as compared with agricultural soils. Microbial activity and Q10 values were also higher in theforest soils. While soil properties in the forest were fairly similar across topographic gradients, low‐lyingpositions under agricultural regions had higher bulk density and organic matter content than upslopepositions, suggesting significant movement of material along topographic gradients. Differences in soilproperties are attributed largely to increased compaction and loss of organic matter inputs in theagricultural system. Our results suggest that the conversion of forested land cover to agriculture landcover reduces soil quality and carbon storage, alters long‐term site productivity, and contributes toincreased atmospheric carbon dioxide concentrations.


Sign in / Sign up

Export Citation Format

Share Document