scholarly journals Alpha Power Extended Inverse Weibull Poisson Distribution: Properties, Inference, and Applications to lifetime data

2021 ◽  
Vol 11 (1) ◽  
pp. 10
Author(s):  
Jemilohun Vincent Gbenga ◽  
Ipinyomi Reuben Adeyemi

In this paper, a new four-parameter extended inverse Weibull distribution called Alpha power Extended Inverse Weibull Poisson distribution is introduced using the alpha power Poisson generator. This method adds two shape parameters to a baseline distribution thereby increasing its flexibility and applicability in modeling lifetime data. We study the structural properties of the new distribution such as the mean, variance, quantile function, median, ordinary and incomplete moments, reliability analysis, Lorenz and Bonferroni curves, Renyi entropy, mean waiting time, mean residual life, and order statistics. We use the method of maximum likelihood technique for estimating the model parameters of Alpha power extended inverse Weibull distribution and the corresponding confidence intervals are obtained. The simulation method is carried out to evaluate the performance of the maximum likelihood estimate in terms of their Absolute Bias and Mean Square Error using simulated data. Two lifetime data sets are presented to demonstrate the applicability of the new model and it is found that the new model has superior modeling power when compare to Inverse Weibull distribution, Alpha Power Poisson inverse exponential distribution, Alpha Power Extended Inverse Weibull distribution, and Alpha Power Extended Inverse Exponential distribution.

Filomat ◽  
2020 ◽  
Vol 34 (8) ◽  
pp. 2511-2531 ◽  
Author(s):  
M.S. Eliwa ◽  
M. El-Morshedy

In this paper we have considered one model, namely the bivariate discrete inverse Weibull distribution, which has not been considered in the statistical literature yet. The proposed model is a discrete analogue of Marshall-Olkin inverse Weibull distribution. Some of its important statistical properties are studied. Maximum likelihood and Bayesian methods are used to estimate the model parameters. A detailed simulation study is carried out to examine the bias and mean square error of maximum likelihood and Bayesian estimators. Finally, three real data sets are analyzed to illustrate the importance of the proposedmodel.


2019 ◽  
Vol 8 (2) ◽  
pp. 146
Author(s):  
Saeed Al-mualim

A new extension of the Poisson Inverse Weibull distribution is derived and studied in details. Number of structural mathematical properties are derived. We used the well-known maximum likelihood method for estimating the model parameters. The new model is applied for modeling some real data sets to prove its importance and flexibility empirically.


2018 ◽  
Vol 7 (5) ◽  
pp. 120
Author(s):  
T. H. M. Abouelmagd

A new version of the Lomax model is introduced andstudied. The major justification for the practicality of the new model isbased on the wider use of the Lomax model. We are also motivated tointroduce the new model since the density of the new distribution exhibitsvarious important shapes such as the unimodal, the right skewed and the leftskewed. The new model can be viewed as a mixture of the exponentiated Lomaxdistribution. It can also be considered as a suitable model for fitting thesymmetric, left skewed, right skewed, and unimodal data sets. The maximumlikelihood estimation method is used to estimate the model parameters. Weprove empirically the importance and flexibility of the new model inmodeling two types of aircraft windshield lifetime data sets. The proposedlifetime model is much better than gamma Lomax, exponentiated Lomax, Lomaxand beta Lomax models so the new distribution is a good alternative to thesemodels in modeling aircraft windshield data.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Saima K. Khosa ◽  
Ahmed Z. Afify ◽  
Zubair Ahmad ◽  
Mi Zichuan ◽  
Saddam Hussain ◽  
...  

In this article, a new approach is used to introduce an additional parameter to a continuous class of distributions. The new class is referred to as a new extended-F family of distributions. The new extended-Weibull distribution, as a special submodel of this family, is discussed. General expressions for some mathematical properties of the proposed family are derived, and maximum likelihood estimators of the model parameters are obtained. Furthermore, a simulation study is provided to evaluate the validity of the maximum likelihood estimators. Finally, the flexibility of the proposed method is illustrated via two applications to real data, and the comparison is made with the Weibull and some of its well-known extensions such as Marshall–Olkin Weibull, alpha power-transformed Weibull, and Kumaraswamy Weibull distributions.


Symmetry ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 440 ◽  
Author(s):  
Abdulhakim A. Al-babtain ◽  
I. Elbatal ◽  
Haitham M. Yousof

In this article, we introduced a new extension of the binomial-exponential 2 distribution. We discussed some of its structural mathematical properties. A simple type Copula-based construction is also presented to construct the bivariate- and multivariate-type distributions. We estimated the model parameters via the maximum likelihood method. Finally, we illustrated the importance of the new model by the study of two real data applications to show the flexibility and potentiality of the new model in modeling skewed and symmetric data sets.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Maha A. Aldahlan

In this paper, a new three-parameter lifetime distribution is introduced; the new model is a generalization of the log-logistic (LL) model, and it is called the alpha power transformed log-logistic (APTLL) distribution. The APTLL distribution is more flexible than some generalizations of log-logistic distribution. We derived some mathematical properties including moments, moment-generating function, quantile function, Rényi entropy, and order statistics of the new model. The model parameters are estimated using maximum likelihood method of estimation. The simulation study is performed to investigate the effectiveness of the estimates. Finally, we used one real-life dataset to show the flexibility of the APTLL distribution.


2021 ◽  
Vol 50 (5) ◽  
pp. 38-51
Author(s):  
Mohammad Kazemi ◽  
Mina Azizpoor

The hybrid censoring is a mixture of type-I and type-II censoring schemes. This paper presents the statistical inferences of the inverse Weibull distribution parameters when the data are type-I hybrid censored. First, we consider the maximum likelihood estimates of the unknown parameters. It is observed that the maximum likelihood estimates can not be obtained in closed form. We further obtain the Bayes estimates and the corresponding highest posterior density credible intervals of the unknown parameters under the assumption of independent gamma priors using the importance sampling procedure. We also compute the approximate Bayes estimates using Lindley's approximation technique. The performance of the Bayes estimates have been compared with maximum likelihood estimates through the Monte Carlo Markov chain techniques. Finally, a real data set have been analysed for illustration purpose.


Author(s):  
Jamilu Yunusa Falgore

In this article, an extension of Inverse Lomax (IL) distribution with the Zubair-G family is considered . Various statistical properties of the new model where derived, including moment generating function, R´enyi entropy, and order statistics. A Monte Carlo simulation study was presented to evaluate the performance of the maximum likelihood estimators. The new model can be skew to the right, constant, and decreasing functions depending on the parameter values.We discussed the estimation of the model parameters by maximum likelihood method. The application of the new model to the data sets indicates that the new model is better than the existing competitors as it has minimum value of statistics criteria.


2021 ◽  
Vol 10 (3) ◽  
pp. 8
Author(s):  
Adebisi Ade Ogunde ◽  
Gbenga Adelekan Olalude ◽  
Oyebimpe Emmanuel Adeniji ◽  
Kayode Balogun

A new generalization of the Frechet distribution called Lehmann Type II Frechet Poisson distribution is defined and studied. Various structural mathematical properties of the proposed model including ordinary moments, incomplete moments, generating functions, order statistics, Renyi entropy, stochastic ordering, Bonferroni and Lorenz curve, mean and median deviation, stress-strength parameter are investigated. The maximum likelihood method is used to estimate the model parameters. We examine the performance of the maximum likelihood method by means of a numerical simulation study. The new distribution is applied for modeling three real data sets to illustrate empirically its flexibility and tractability in modeling life time data.


Sign in / Sign up

Export Citation Format

Share Document