scholarly journals Evaluation of Growth and Morphological Pattern of Mycorrhization in Cowpea [Vigna unguiculata (L.)] Fertilized With Phosphorus

2018 ◽  
Vol 10 (11) ◽  
pp. 414
Author(s):  
José Maria Tupinambá da Silva Júnior ◽  
Paulo Furtado Mendes Filho ◽  
Vânia Felipe Freire Gomes ◽  
Ricardo Luiz Lange Ness ◽  
Aldênia Mendes Mascena de Almeida ◽  
...  

Microorganisms perform important functions in the soil and, among these organisms, the role of arbuscular mycorrhizal fungi (AMF) in plant growth should be highlighted. AMF colonize the roots of most plant species and their beneficial functions in plant development include increased absorption of nutrients from the soil, especially those of low mobility such as phosphorus (P). Evaluating agricultural practices conducted by farmers, such as phosphate fertilization, and observing how they will influence AMF activity in benefiting plant growth should be prioritized. Thus, an experiment was conducted in greenhouse to evaluate the effect of phosphate fertilization on the growth of cowpea plants colonized by AMF and to know which morphological pattern of colonization prevails in their roots. Five P doses and a control treatment, without fertilization, were added to the soil. Cowpea plants respond to phosphate fertilization up to the dose of 240.50 mg P kg-1 soil, for shoot dry mass and in the dose of 150 mg P kg-1 soil, for plant height. The morphological pattern observed in the roots was the intermediate type, characterized by the presence of intra and intercellular hyphae and vesicles, and there was no influence of phosphate fertilization on morphology. High P contents added to the soil led to a reduction in mycorrhizal colonization in cowpea roots.

Plants ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 42 ◽  
Author(s):  
Husain Ahmad ◽  
Sikandar Hayat ◽  
Muhammad Ali ◽  
Hongjiu Liu ◽  
Xuejin Chen ◽  
...  

The strategic role of phytohormones and arbuscular mycorrhizal fungi (AMF) to overcome various stress conditions is gaining popularity in sustainable agricultural practices. This current study aims to investigate and identify the protective roles of 28-homobrassinolide (HBL) and Glomus versiforme on two cucumber cultivars (salt sensitive Jinyou 1# and tolerant Chanchun mici (CCMC)) grown under saline conditions (100 mM NaCl). HBL and AMF were applied as individual and combined treatments on two cucumber cultivars and their effects were observed on the morphological growth and physiology under control and saline conditions. Findings revealed that the treated plants showed better performance under saline conditions through improved photosynthesis, leaf relative water content, and decreased electrolyte leakage in tolerant cultivar (CCMC) and to a lesser extent in sensitive (Jinyou 1#) cultivar. Comparable differences were noticed in the antioxidant enzymes activity such as superoxide dismutase, catalase, and peroxidase after every 10 days in both cultivars. Treating the plants with HBL and AMF also improved the mineral uptake regulation and lowered sodium concentration in roots compared to that in the non-treated plants. Current findings suggest that the protective role of HBL and AMF involves the regulation of antioxidants and lowers the risk of ion toxicity in the cucumber and hence enhance tolerance to salinity. These results are promising, but further studies are needed to verify the crop tolerance to stress and help in sustainable agricultural production, particularly vegetables that are prone to salinity.


2018 ◽  
Vol 19 (2) ◽  
pp. 651-655
Author(s):  
WIWIK EKYASTUTI ◽  
HANNA ARTUTI EKAMAWANTI

Ekyastuti W, Ekamawanti HA. 2018. Short Communication: The role of microbial rhizosphere in enhancing plant growth of Jatropha curcas in soil contaminated mercury. Biodiversitas 19: 651-655. Soil in the area of ex-gold mining, has the chemical-physical constraints to the growth of plants. These chemical-physical constraints are low organic matter, poor of nutrient, acid pH, very low CEC, soil texture dominated by sand, and mercury contamination. This area needs to be rehabilitated. Previous research has found that Jatropha curcas as a plant tolerant to mercury. On the other hand, some types of microbial rhizosphere such as arbuscular mycorrhizal fungi (AMF) and mercury reducing bacteria (MRB) also have an ability to reduce mercury. The purpose of this study was to determine the role of microbial components of AMF and MRB in enhancing the growth of J. curcas in tailings contaminated mercury. The study was conducted in two places, in the greenhouse and in the tailing area of ex-gold mining, using factorial completely randomized design. Results showed that interactions between AMF and MRB were simultaneously able to enhance the growth of J. curcas not only in the greenhouse, but also in the field (tailing area). In the greenhouse (nursery), several isolates of Bacillus sp, Bacillus sp + Glomus SS11 and Bacillus sp + Glomus SS18 in the forms of inoculum were very effective in enhancing the seedling growth of J. curcas. However, results were apparently changed after those seedlings were planted in the field (tailings of ex-gold mining). The combination of Bacillus sp. + Glomus SS18 was the best treatment to enhance the growth of J. curcas of all used treatments. This result proves that the role of microbial rhizosphere, especially AMF and MRB, could effectively enhance the growth of J. curcas in tailings contaminated with mercury.


2013 ◽  
Vol 47 (16) ◽  
pp. 9496-9504 ◽  
Author(s):  
Youzhi Feng ◽  
Xiangchao Cui ◽  
Shiying He ◽  
Ge Dong ◽  
Min Chen ◽  
...  

Revista CERES ◽  
2018 ◽  
Vol 65 (4) ◽  
pp. 356-363
Author(s):  
Marina Martinello Back ◽  
Gabriela Fedrizzi ◽  
Paulo Vitor Dutra de Souza

ABSTRACT The use of arbuscular mycorrhizal fungi (AMF) in the production of rootstocks is a strategy to promote faster plant growth. However, this response depends on the symbiont species. The objective of this study was to evaluate the influence of different species of arbuscular mycorrhizal fungus (AMF) on the development and physiology of citrange 'Fepagro C37 Reck' rootstock. Four species of AMF were used in the experiment: Scutellospora heterogama, Gigaspora margarita, Glomus etunicatum, and Acaulospora sp., and a control treatment. The experiment was arranged in a randomized blocks design, with 5 treatments, 3 replicates, and 10 plants per plot. Every 15 days, height (cm) and stem diameter (mm) of plants were measured in the nursery. At 330 days, the number of leaves, leaf area (cm²), fresh and dry mass of roots and shoot (g/plant), root and shoot reserve content, and AMF colonization were evaluated. The AMF inoculation promoted an accelerated vegetative growth, resulting in greater height and diameter. The fungi also promoted greater absorption of most of the nutrients and increase in all other parameters evaluated. However, no effect was found on the reserve content of the rootstock. Roots were colonized with moderate presence of arbuscules and low presence of vesicles. AMF, regardless of species, influence the development and physiology of the citrange 'Fepagro C37 Reck' rootstock.


Author(s):  
Thangavelu Muthukumar ◽  
Perumalsamy Priyadharsini ◽  
Eswaranpillai Uma ◽  
Sarah Jaison ◽  
Radha Raman Pandey

Sign in / Sign up

Export Citation Format

Share Document