scholarly journals Distribution of Earthquake Magnitude Levels in Bangladesh

2019 ◽  
Vol 11 (3) ◽  
pp. 15
Author(s):  
Md. Habibur Rahman ◽  
Md. Moyazzem Hossain

Earthquakes are one of the main natural hazards which seriously make threats the life and property of human beings. Different probability distributions of the earthquake magnitude levels in Bangladesh are fitted. In terms of graphical assessment and goodness-of-fit criterion, the log-normal distribution is found to be the best fit probability distributions for the earthquake magnitude levels in Bangladesh among the probability distribution considered in this study. The average earthquake magnitude level found 4.67 (in Richter scale) for log-normal distribution and the approximately forty-six percent chance is predicted to take place earthquake magnitude in the interval four to five.

2020 ◽  
Vol 9 (1) ◽  
pp. 84-88
Author(s):  
Govinda Prasad Dhungana ◽  
Laxmi Prasad Sapkota

 Hemoglobin level is a continuous variable. So, it follows some theoretical probability distribution Normal, Log-normal, Gamma and Weibull distribution having two parameters. There is low variation in observed and expected frequency of Normal distribution in bar diagram. Similarly, calculated value of chi-square test (goodness of fit) is observed which is lower in Normal distribution. Furthermore, plot of PDFof Normal distribution covers larger area of histogram than all of other distribution. Hence Normal distribution is the best fit to predict the hemoglobin level in future.


2016 ◽  
Vol 11 (1) ◽  
pp. 432-440 ◽  
Author(s):  
M. T. Amin ◽  
M. Rizwan ◽  
A. A. Alazba

AbstractThis study was designed to find the best-fit probability distribution of annual maximum rainfall based on a twenty-four-hour sample in the northern regions of Pakistan using four probability distributions: normal, log-normal, log-Pearson type-III and Gumbel max. Based on the scores of goodness of fit tests, the normal distribution was found to be the best-fit probability distribution at the Mardan rainfall gauging station. The log-Pearson type-III distribution was found to be the best-fit probability distribution at the rest of the rainfall gauging stations. The maximum values of expected rainfall were calculated using the best-fit probability distributions and can be used by design engineers in future research.


2021 ◽  
Vol 2 (2) ◽  
pp. 60-67
Author(s):  
Rashidul Hasan Rashidul Hasan

The estimation of a suitable probability model depends mainly on the features of available temperature data at a particular place. As a result, existing probability distributions must be evaluated to establish an appropriate probability model that can deliver precise temperature estimation. The study intended to estimate the best-fitted probability model for the monthly maximum temperature at the Sylhet station in Bangladesh from January 2002 to December 2012 using several statistical analyses. Ten continuous probability distributions such as Exponential, Gamma, Log-Gamma, Beta, Normal, Log-Normal, Erlang, Power Function, Rayleigh, and Weibull distributions were fitted for these tasks using the maximum likelihood technique. To determine the model’s fit to the temperature data, several goodness-of-fit tests were applied, including the Kolmogorov-Smirnov test, Anderson-Darling test, and Chi-square test. The Beta distribution is found to be the best-fitted probability distribution based on the largest overall score derived from three specified goodness-of-fit tests for the monthly maximum temperature data at the Sylhet station.


2016 ◽  
Vol 18 (2) ◽  
pp. 139-148
Author(s):  
Togani Cahyadi Upomo ◽  
Rini Kusumawardani

Rainfall event is a stochastic process, so to explain and analyze this processes the probability theory and frequency analysisare used. There are four types of probability distributions.They are normal, log normal, log Pearson III and Gumbel. To find the best probabilities distribution, it will used goodness of fit test. The tests consist of chi-square and smirnov-kolmogorov. Results of the chi-square test for normal distribution, log normal and log Pearson III was 0.200, while for the Gumbel distribution was 2.333. Results of Smirnov Kolmogorov test for normal distribution D = 0.1554, log-normal distribution D = 0.1103, log Pearson III distribution D = 0.1177 and Gumbel distribution D = 0.095. All of the distribution can be accepted with a confidence level of 95%, but the best distribution is log normal distribution.Kejadian hujan merupakan proses stokastik, sehingga untuk keperluan analisa dan menjelaskan proses stokastik tersebut digunakan teori probabilitas dan analisa frekuensi. Terdapat empat jenis distribusi probabilitas yaitu distribusi normal, log normal, log pearson III dan gumbel. Untuk mencari distribusi probabilitas terbaik maka akan digunakan pengujian metode goodness of fit test. Pengujian tersebut meliputi uji chi-kuadrat dan uji smirnov kolmogorov. Hasil pengujian chi kuadrat untuk distribusi normal, log normal dan log pearson III adalah 0.200, sedangkan untuk distribusi gumbel 2.333. Hasil pengujian smirnov kolmogorov untuk distribusi normal dengan nilai D = 0.1554, distribusi log normal dengan nilai D = 0.1103, distribusi log pearson III dengan nilai D = 0.1177 dan distribusi gumbel dengan nilai D = 0.095. Seluruh distribusi dapat diterima dengan tingkat kepercayaan 95%, tetapi distribusi terbaik adalah distribusi log normal.


2013 ◽  
Vol 671-674 ◽  
pp. 1641-1647
Author(s):  
Xu Yan ◽  
Yong Zhi Zuo ◽  
Qiao Zhi Lu ◽  
Da Huo ◽  
Ming Liu

23,037 values of concrete compressive strength from construction sites were obtained from Beijing Building Construction Research Institute from 2009-2012 by standard cubes testing method. The mean values, standard deviations, coefficients of variations, maxima and minima were derived from the original strength values analyzed and compared with the data in 1989. The results make up for the lack in C25/C30 and the maxima/minima of every strength class of concrete of the former data. Both the coefficients of variations and mean values have increased in recent years. The log-normal distribution commonly used in concrete compressive strength statistics is not that suitable for strength modeling for it is unbounded. So a bounded normal distribution was given in this paper. By Geary's test, the goodness-of-fit of bounded normal distribution is better than log-normal distribution has been proved.


2019 ◽  
Vol 9 (24) ◽  
pp. 5517
Author(s):  
Cheol Kang ◽  
Koo-Yong Park ◽  
Yong-Sik Cho

As devastating and unpredictable tsunamis generated by underwater earthquakes are occurring more frequently, the need for tsunami disaster prevention measures is rapidly increasing. In this study, tsunami heights were estimated, and the best-fit distribution was examined through a combination of numerical analyses and statistical methods. A numerical model was employed to estimate the tsunami heights, and the parameters were estimated using the method of L-moments applied to the estimated tsunami heights. The best-fit distribution was determined by applying the estimated parameters to the L-moment ratio diagram. The study areas were the Imwon Port and the Sadong Port located in the eastern part of the Korean Peninsula. The tsunami height distribution was represented by a log-normal distribution for the Imwon Port, whereas the distribution was represented by a generalized Pareto distribution for the Sadong Port. The study indicates that the distribution most commonly suggested by previous studies, i.e., the log-normal distribution, is not always accurate. Therefore, when performing statistical analysis on tsunami heights, the assumption of a log-normal distribution should be considered carefully.


2009 ◽  
Vol 1 (1) ◽  
pp. 50-52
Author(s):  
Abhijit Bhuyan ◽  
Munindra Borah

In this study our main objective is to determine the best fitting probability distribution for annual maximum flood discharge data of river Kopili, Assam. Various probability distributions i.e. Gumbel (G), generalized extreme value (GEV), normal (N), log-normal (LN3), generalized logistic (GLO), generalized pareto (GPA) and Pearson type-III (PE3) have been used for our study. The L-moments methods have been used for estimating the parameters of all the distributions. The root mean square error (RMSE), model efficiency and D-index (fit in the top six values) together with L-moment ratio diagram is used for goodness of fit measure. It has been observed that Generalized Pareto is the best fitting probability distribution for annual maximum discharge data of river Kopili.


2021 ◽  
Vol 13 (5) ◽  
pp. 2688
Author(s):  
Martin Vlkovský ◽  
Jiří Neubauer ◽  
Jiří Malíšek ◽  
Jaroslav Michálek

The article focuses on evaluating a transportation experiment that intends to improve road safety by analyzing transport shocks that significantly affect the system of securing the load, vehicle, driver, and other aspects. Within Europe, improper or insufficient securing of loads causes up to 25% of all cargo vehicle accidents. Our transport experiment consists of eight rides of a Tatra truck. The measured values of shocks (acceleration coefficients) are statistically evaluated. Three hypotheses are established for these purposes. First, it is proven that the probability distributions of the shocks values differ statistically significantly among individual rides, namely in their shape and median value. Thus further statistical analyses are performed separately for the individual rides, axes, and the accelerometer locations. These analyses prove significant exceedances of the normatively set limits given by the EN 12195-1:2010 standard, which is potentially risky. Especially for the z axis and y axis, the set 20% limit was exceeded in 75.0% and 56.3% of cases, respectively. In the case of the x axis, the established 20% limit was practically not exceeded at all. The analysis of exceeding the permitted limits (the statistical evaluation of the second and third established hypothesis) is based on boxplots that graphically describe the individual rides, as well as on the found contaminated log-normal distribution of the values of the acceleration coefficients in the individual rides. The last hypothesis regarding exceeding the double value of the permitted limit is rejected. Methods of statistical comparison are used during data analysis. The probability distribution of acceleration coefficients is modeled using a contaminated log-normal distribution.


2018 ◽  
Vol 2018 ◽  
pp. 1-21 ◽  
Author(s):  
Xia Xintao ◽  
Chang Zhen ◽  
Zhang Lijun ◽  
Yang Xiaowei

The failure data of bearing products is random and discrete and shows evident uncertainty. Is it accurate and reliable to use Weibull distribution to represent the failure model of product? The Weibull distribution, log-normal distribution, and an improved maximum entropy probability distribution were compared and analyzed to find an optimum and precise reliability analysis model. By utilizing computer simulation technology and k-s hypothesis testing, the feasibility of three models was verified, and the reliability of different models obtained via practical bearing failure data was compared and analyzed. The research indicates that the reliability model of two-parameter Weibull distribution does not apply to all situations, and sometimes, two-parameter log-normal distribution model is more precise and feasible; compared to three-parameter log-normal distribution model, the three-parameter Weibull distribution manifests better accuracy but still does not apply to all cases, while the novel proposed model of improved maximum entropy probability distribution fits not only all kinds of known distributions but also poor information issues with unknown probability distribution, prior information, or trends, so it is an ideal reliability analysis model with least error at present.


Sign in / Sign up

Export Citation Format

Share Document