scholarly journals Theory and Application of the Numerical Simulation in the Frozen Soil Problems

2021 ◽  
Vol 13 (4) ◽  
pp. 30
Author(s):  
Liye Song ◽  
Yirang Yuan

The freezing-thawing processes in soils are important components of terrestrial hydrology, which significantly influence energy and water exchanges between land surface and sub-surface. Long-term changes in frost and thaw depths are also an important indicator of climate change. A water-heat coupled movements model is established with frozen soil in this paper, which treats the freezing/thawing front as a moving interface governed by some Stefan problems with two free boundaries. The numerical simulation is conducted by using the modified finite difference method. The model is validated to compare its predictions with GEWEX Asian Monsoon Experiment(GAME)-Tibet observations at D66 site in Tibetan Plateau. The results show that the simulated soil temperature, soil water content and frost/thaw depth are in excellent agreement with the measured values. Finally, optimal error estimation for L^∞ norm is derived on the model problem by using coordinate transformation method. The numerical simulation system is established on the basis of rigorous mathematics and mechanics, which successfully solved the important and difficult problems of environmental science.

2009 ◽  
Vol 6 (5) ◽  
pp. 5705-5752 ◽  
Author(s):  
Y. Zhang ◽  
S. K. Carey ◽  
W. L. Quinton ◽  
J. R. Janowicz ◽  
G. N. Flerchinger

Abstract. Infiltration into frozen and unfrozen soils is critical in hydrology, controlling active layer soil water dynamics and influencing runoff. Few Land Surface Models (LSMs) and Hydrological Models (HMs) have been developed, adapted or tested for frozen conditions and permafrost soils. Considering the vast geographical area influenced by freeze/thaw processes and permafrost, and the rapid environmental change observed worldwide in these regions, a need exists to improve models to better represent their hydrology. In this study, various infiltration algorithms and parameterisation methods, which are commonly employed in current LSMs and HMs were tested against detailed measurements at three sites in Canada's discontinuous permafrost region with organic soil depths ranging from 0.02 to 3 m. Field data from two consecutive years were used to calibrate and evaluate the infiltration algorithms and parameterisations. Important conclusions include: (1) the single most important factor that controls the infiltration at permafrost sites is ground thaw depth, (2) differences among the simulated infiltration by different algorithms and parameterisations were only found when the ground was frozen or during the initial fast thawing stages, but not after ground thaw reaches a critical depth of 15–30 cm, (3) despite similarities in simulated total infiltration after ground thaw reaches the critical depth, the choice of algorithm influenced the distribution of water among the soil layers, and (4) the ice impedance factor for hydraulic conductivity, which is commonly used in LSMs and HMs, may not be necessary once the water potential driven frozen soil parameterisation is employed. Results from this work provide guidelines and can be directly implemented in LSMs and HMs to improve their application in organic covered permafrost soils.


2010 ◽  
Vol 14 (5) ◽  
pp. 729-750 ◽  
Author(s):  
Y. Zhang ◽  
S. K. Carey ◽  
W. L. Quinton ◽  
J. R. Janowicz ◽  
J. W. Pomeroy ◽  
...  

Abstract. Infiltration into frozen and unfrozen soils is critical in hydrology, controlling active layer soil water dynamics and influencing runoff. Few Land Surface Models (LSMs) and Hydrological Models (HMs) have been developed, adapted or tested for frozen conditions and permafrost soils. Considering the vast geographical area influenced by freeze/thaw processes and permafrost, and the rapid environmental change observed worldwide in these regions, a need exists to improve models to better represent their hydrology. In this study, various infiltration algorithms and parameterisation methods, which are commonly employed in current LSMs and HMs were tested against detailed measurements at three sites in Canada's discontinuous permafrost region with organic soil depths ranging from 0.02 to 3 m. Field data from two consecutive years were used to calibrate and evaluate the infiltration algorithms and parameterisations. Important conclusions include: (1) the single most important factor that controls the infiltration at permafrost sites is ground thaw depth, (2) differences among the simulated infiltration by different algorithms and parameterisations were only found when the ground was frozen or during the initial fast thawing stages, but not after ground thaw reaches a critical depth of 15 to 30 cm, (3) despite similarities in simulated total infiltration after ground thaw reaches the critical depth, the choice of algorithm influenced the distribution of water among the soil layers, and (4) the ice impedance factor for hydraulic conductivity, which is commonly used in LSMs and HMs, may not be necessary once the water potential driven frozen soil parameterisation is employed. Results from this work provide guidelines that can be directly implemented in LSMs and HMs to improve their application in organic covered permafrost soils.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Wei Xiao ◽  
Enlong Liu ◽  
Xiao Yin ◽  
Guike Zhang ◽  
Chong Zhang ◽  
...  

PurposeThe purpose of this paper is to perform the thermo-hydro-mechanical (THM) numerical analysis in order to study the thawing process for frozen soil and to predict the thawing settlement.Design/methodology/approachA new one-dimensional multi-field physical coupled model was proposed here to describe the thawing process of saturated frozen soil, whereby the void ratio varied linearly with effective stress (Eq. 10) and hydraulic conductivity (Eq. 27b). The thawing process was simulated with different initial and boundary conditions in an open system with temperature variations. The mechanical behavior and water migration of the representative cases were also investigated.FindingsThe comparisons of representative cases with experimental data demonstrated that the model predicts thawing settlement well. It was found that the larger temperature gradient, higher overburden pressure and higher water content could lead to larger thawing settlement. The temperature was observed that to distribute height linearly in both frozen zone and unfrozen zone of the sample. Water migration forced to a decrease in the water content of the unfrozen zone and an increase in water content at the thawing front.Research limitations/implicationsIn this study, only the one-directional thawing processes along the frozen soil samples were investigated numerically and compared with test results, which can be extended to two-dimensional analysis of thawing process in frozen soil.Originality/valueThis study helps to understand the thawing process of frozen soil by coupled thermo-hydro-mechanical numerical simulation.


2009 ◽  
Vol 6 (6) ◽  
pp. 6895-6928
Author(s):  
L. Wang ◽  
T. Koike ◽  
K. Yang ◽  
R. Jin ◽  
H. Li

Abstract. In this study, a frozen soil parameterization has been modified and incorporated into a distributed biosphere hydrological model (WEB-DHM). The WEB-DHM with the frozen scheme was then rigorously evaluated in a small cold area, the Binngou watershed, against the in-situ observations from the WATER (Watershed Allied Telemetry Experimental Research). In the summer 2008, land surface parameters were optimized using the observed surface radiation fluxes and the soil temperature profile at the Dadongshu-Yakou (DY) station in July; and then soil hydraulic parameters were obtained by the calibration of the July soil moisture profile at the DY station and by the calibration of the discharges at the basin outlet in July and August that covers the annual largest flood peak of 2008. The calibrated WEB-DHM with the frozen scheme was then used for a yearlong simulation from 21 November 2007 to 20 November 2008, to check its performance in cold seasons. Results showed that the WEB-DHM with the frozen scheme has given much better performance than the WEB-DHM without the frozen scheme, in the simulations of soil moisture profile at the DY station and the discharges at the basin outlet in the yearlong simulation.


2017 ◽  
Vol 53 (6) ◽  
pp. 5085-5103 ◽  
Author(s):  
Lei Wang ◽  
Jing Zhou ◽  
Jia Qi ◽  
Litao Sun ◽  
Kun Yang ◽  
...  

2013 ◽  
Vol 694-697 ◽  
pp. 927-935 ◽  
Author(s):  
Yi Sun ◽  
Tao Ma ◽  
Chia Yung Han ◽  
Joseph Ross ◽  
William Wee

This paper presents a simple and accurate coordinate transformation method for extending the tracking space of the Intersense IS-900 spatial and motion tracking system using multiple pre-configured emitter towers to form the emitter constellation, but without resorting to the use of a surveyor machine. The proposed approach uses the differences of positional coordinate readings from each emitter tower among a set of commonly viewed spatial points to calculate the parameters needed to define the coordinate transformation. By applying this method, the tracking accuracy using the entire emitter constellation can be achieved by less than 0.5 inches error in most of the working space, and as low as 0.2 inches error in the frontal part of the working space.


2021 ◽  
Author(s):  
Jin Ma ◽  
Ji Zhou

<p>As an important indicator of land-atmosphere energy interaction, land surface temperature (LST) plays an important role in the research of climate change, hydrology, and various land surface processes. Compared with traditional ground-based observation, satellite remote sensing provides the possibility to retrieve LST more efficiently over a global scale. Since the lack of global LST before, Ma et al., (2020) released a global 0.05 ×0.05  long-term (1981-2000) LST based on NOAA-7/9/11/14 AVHRR. The dataset includes three layers: (1) instantaneous LST, a product generated based on an ensemble of several split-window algorithms with a random forest (RF-SWA); (2) orbital-drift-corrected (ODC) LST, a drift-corrected version of RF-SWA LST at 14:30 solar time; and (3) monthly averages of ODC LST. To meet the requirement of the long-term application, e.g. climate change, the period of the LST is extended from 1981-2000 to 1981-2020 in this study. The LST from 2001 to 2020 are retrieved from NOAA-16/18/19 AVHRR with the same algorithm for NOAA-7/8/11/14 AVHRR. The train and test results based on the simulation data from SeeBor and TIGR atmospheric profiles show that the accuracy of the RF-SWA method for the three sensors is consistent with the previous four sensors, i.e. the mean bias error and standard deviation less than 0.10 K and 1.10 K, respectively, under the assumption that the maximum emissivity and water vapor content uncertainties are 0.04 and 1.0 g/cm<sup>2</sup>, respectively. The preliminary validation against <em>in-situ</em> LST also shows a similar accuracy, indicating that the accuracy of LST from 1981 to 2020 are consistent with each other. In the generation code, the new LST has been improved in terms of land surface emissivity estimation, identification of cloud pixel, and the ODC method in order to generate a more reliable LST dataset. Up to now, the new version LST product (1981-2020) is under generating and will be released soon in support of the scientific research community.</p>


Sign in / Sign up

Export Citation Format

Share Document