scholarly journals Characterization of PZ27 and PZ52 Piezoceramics from Electrical Measurements

2021 ◽  
Vol 10 (2) ◽  
pp. 84
Author(s):  
Oumar DIALLO ◽  
Harouna Mamadou BAL ◽  
Mamadou Babacar NDIAYE ◽  
Salif GAYE ◽  
Guy FEUILLARD

The characterization of ceramics is essential for the optimization of ultrasonic transducers. To do this we must determine the functional properties of ceramics which are: speed of vibration of longitudinal waves kt = Coupling coefficient: indicates the ability of the ceramic to transform electrical energy into mechanical energy the dielectric constant electrical and mechanical losses acoustic impedance The electrical measurements allowed us to determine the functional properties of the ceramics available to us. We were able to refine the results thus obtained thanks to the digital simulator (KLM).

2011 ◽  
Vol 50-51 ◽  
pp. 32-36
Author(s):  
Li Jiao Gong ◽  
Jiang Quan Li

The use of piezoelectric material as transducer is prevalent. Piezoelectric bending mode element can be used for vibration energy harvesting because it can convert mechanical energy into electrical energy. In this article, electrical impedance characterization and equivalent circuit of triple-layer piezoelectric bender are discussed. Triple-layer piezoelectric bending device is fabricated, measured and modeled. This paper is aimed to explore simple but practical equivalent circuit models, expressed using electrical parameters of triple-layer piezoelectric bender and investigate the applicability of the Van Dyke circuit model and the complex circuit model in modeling the specimen’s equivalent circuit. The models produced impedance curves that closely matched the impedance measured for piezoelectric sample. The impedance characterization can provide a good understanding on the electrical behaviors of the triple layer piezoelectric bender when analyzing the performance of piezoelectric device.


2003 ◽  
Vol 782 ◽  
Author(s):  
Alireza Modafe ◽  
Nima Ghalichechian ◽  
Benjamin Kleber ◽  
Reza Ghodssi

ABSTRACTElectrical properties and thickness of insulating dielectric films directly affect electrical energy loss and electrical breakdown limit in electric micromachines. A thick, low-k film exhibits low parasitic capacitive effects that help with the reduction of electrical energy loss. The electrical performance can be deteriorated due to degradation of the electrical properties of the insulating dielectric material caused by process, device structure, and moisture. In this paper, we introduce the application of CYCLOTENE, a spin-on, low-k, BCB-based polymer in electric micromachines as insulating layer and interlevel dielectric. A novel approach using interdigitated capacitors for electrical characterization of CYCLOTENE and the effect of moisture absorption is introduced in this paper. The dielectric constant of CYCLOTENE is extracted from two steps of capacitance measurements, giving an average value of 2.49 with a standard deviation of 1.5 %. The dielectric constant increases by 1.2 % after a humidity stress of 85 %RH at 85 °C. The measured I-V characteristics of CYCLOTENE show a dependency of the breakdown strength and leakage current on the geometrical dimensions of the device under test. A breakdown strength of 225 V/μm for 2 μm finger spacing and 320 V/μm for 3 μm finger spacing, and a leakage current of a few to tens of pA are measured. The I-V characteristics degrades drastically after a humidity stress of 85 %RH at 85 °C, showing a breakdown strength of 100 V/μm for 2 μm finger spacing and 180 V/μm for 3 μm finger spacing. Based on the results of this study, it is expected that the electrical efficiency of an electric micromachine is improved using BCB-based polymers with negligible dependency on moisture absorption. On the other hand, the maximum performance that depends on the maximum operating voltage is adversely affected by the degradation of the breakdown voltage after moisture absorption.


Author(s):  
Thorben Hoffstadt ◽  
Jürgen Maas

Actuators based on dielectric electroactive polymers (DEAP) use the electrostatic pressure to convert electrical into mechanical energy. Stack-actuators are a common approach to realize DEAP-based multilayer actuators. To optimize the stationary generated force and stretch the influences of material and free design parameters are investigated based on a model of a loss-free actuator. For this purpose the stretch-force-behavior depending on the applied electric energy is introduced. Based on this approach, besides the general scalability of the force and stretch, an optimal operating point can be determined at which the ratio of generated mechanical work to the applied electrical energy is maximized. To further consider performance limitations of such actuators the known effect of electromechanical instability is finally investigated depending on the generated force yielding to critical stretches, forces and energies.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 729-736
Author(s):  
Jincheng He ◽  
Xing Tan ◽  
Wang Tao ◽  
Xinhai Wu ◽  
Huan He ◽  
...  

It is known that piezoelectric material shunted with external circuits can convert mechanical energy to electrical energy, which is so called piezoelectric shunt damping technology. In this paper, a piezoelectric stacks ring (PSR) is designed for vibration control of beams and rotor systems. A relative simple electromechanical model of an Euler Bernoulli beam supported by two piezoelectric stacks shunted with resonant RL circuits is established. The equation of motion of such simplified system has been derived using Hamilton’s principle. A more realistic FEA model is developed. The numerical analysis is carried out using COMSOL® and the simulation results show a significant reduction of vibration amplitude at the specific natural frequencies. Using finite element method, the influence of circuit parameters on lateral vibration control is discussed. A preliminary experiment of a prototype PSR verifies the PSR’s vibration reduction effect.


Author(s):  
A. Ege Engin ◽  
Abdemanaf Tambawala ◽  
Madhavan Swaminathan ◽  
Swapan Bhattacharya ◽  
Pranabes Pramanik ◽  
...  

2014 ◽  
Vol 675-677 ◽  
pp. 1880-1886 ◽  
Author(s):  
Pedro D. Silva ◽  
Pedro Dinis Gaspar ◽  
J. Nunes ◽  
L.P.A Andrade

This paper provides a characterization of the electrical energy consumption of agrifood industries located in the central region of Portugal that use refrigeration systems to ensure the food safety. The study is based on the result analysis of survey data and energy characteristics of the participating companies belonging to the following agrifood sectors: meat, dairy, horticultural, distribution and wine. Through the quantification of energy consumption of companies is possible to determine the amount of greenhouse gases (GHGs) emissions indexed to its manufacturing process. Comparing the energy and GHGs emissions indexes of companies of a sector and between sectors is possible to create reference levels. With the results of this work is possible to rating the companies in relation to reference levels of energy and GHGs emissions and thus promote the rational use of energy by the application of practice measures for the improvement of the energy efficiency and the reduction of GHGs emissions.


Sign in / Sign up

Export Citation Format

Share Document