scholarly journals Striga Infestation in Kenya: Status, Distribution and Management Options

2013 ◽  
Vol 2 (2) ◽  
pp. 99 ◽  
Author(s):  
Evans Atuti Atera ◽  
Takashige Ishii ◽  
John C. Onyango ◽  
Kazuyuki Itoh ◽  
Tetsushi Azuma

<p><em>Striga</em> spp. is considered to be the greatest biological constraint to food production in sub-Saharan Africa, a more serious problem than insects, birds and plant diseases. They are among the most specialized root-parasitic plants inflicting serious injury to their host depriving them water, minerals and photosynthate. The greatest diversity of <em>Striga </em>spp. occurs in grassland. However, <em>Striga hermonthica</em> mainly occurs in farmland infecting grasses. The parasite devastating effect is accomplished prior to its emergence from the soil. It may cause yield losses in cereals ranging from 15% under favourable conditions to 100% where several stress factors are involved, thereby affecting the livelihood of millions of resource-poor farmers. Piecemeal approach to address one aspect of <em>Striga</em> problem at a time has been a setback in technology transfer to producers. Future <em>Striga</em> control programs should not be conducted separately, but should rather be conducted in an integrated approach that combines research talents of various institutions. This will facilitate collaborative research and achieve qualitative interaction between stakeholders, which can easily produce reliable technologies that are practical and available to farmers. <em>Striga</em> being a pervasive pest, time is of essence in controlling it. There is an urgent need for the establishment of policies to promote, implement, and ensure a long-term sustainable <em>Striga</em> control program.</p>

1996 ◽  
Vol 25 (3) ◽  
pp. 157-164 ◽  
Author(s):  
Dana Berner ◽  
Robert Carsky ◽  
Kenton Dashiell ◽  
Jennifer Kling ◽  
Victor Manyong

Striga hermonthica, an obligate root parasite of grasses, Is one of the most severe constraints to cereal production in sub-Saharan Africa. In the recent past, prior to increased production pressure on land, S. hermonthica was controlled in African farming systems by prolonged crop rotations with bush fallow. Because of increasing need for food and concomitant changes in land management practices, however, these fallow rotations are no longer extensively used. Shorter crop rotations and fallow periods have also led to declines in soil fertility which present a very serious threat to African food production. A sustainable solution will be an integrated approach that simultaneously addresses both of these major problems. An integrated programme that replaces traditional bush fallow rotation with non-host nitrogen-fixing legume rotations, using cultivars selected for efficacy in germinating S. hermonthica seeds, is outlined. The programme includes use of S. hermonthlca-free planting material, biological control, cultural control to enhance biological suppressiveness, host-plant resistance, and host-seed treatments.


Weed Science ◽  
2018 ◽  
Vol 66 (4) ◽  
pp. 516-524 ◽  
Author(s):  
Fred Kanampiu ◽  
Dan Makumbi ◽  
Edna Mageto ◽  
Gospel Omanya ◽  
Sammy Waruingi ◽  
...  

AbstractThe parasitic purple witchweed [Striga hermonthica(Del.) Benth.] is a serious constraint to maize production in sub-Saharan Africa, especially in poor soils. VariousStrigaspp. control measures have been developed, but these have not been assessed in an integrated system. This study was conducted to evaluate a set of promising technologies forS. hermonthicamanagement in western Kenya. We evaluated three maize genotypes either intercropped with peanut (Arachis hypogaeaL.), soybean [Glycine max(L.) Merr.], or silverleaf desmodium [Desmodium uncinatum(Jacq.) DC] or as a sole crop at two locations under artificialS. hermonthicainfestation and at three locations under naturalS. hermonthicainfestation between 2011 and 2013. Combined ANOVA showed significant (P<0.05) cropping system and cropping system by environment interactions for most traits measured. Grain yield was highest for maize grown in soybean rotation (3,672 kg ha−1) under artificial infestation and inD. uncinatumand peanut cropping systems (3,203 kg ha−1and 3,193 kg ha−1) under natural infestation. Grain yield was highest for theStrigaspp.-resistant hybrid under both methods of infestation. A lower number of emergedS. hermonthicaplants per square meter were recorded at 10 and 12 wk after planting on maize grown underD. uncinatumin the artificialS. hermonthicainfestation. A combination of herbicide-resistant maize varieties intercropped with legumes was a more effective method forS. hermonthicacontrol than individual-component technologies. Herbicide-resistant andStrigaspp.-resistant maize integrated with legumes would help reduce theStrigaspp. seedbank in the soil. Farmers should be encouraged to adopt an integrated approach to controlStrigaspp. for better maize yields.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Zachary Nsadha ◽  
Chris Rutebarika ◽  
Chrisostom Ayebazibwe ◽  
Bukenya Aloys ◽  
M. Mwanja ◽  
...  

Abstract Background Neurocysticercosis caused by Taenia solium when the parasite lodges in the central nervous system, is an important cause of human seizures and mortality in sub-Saharan Africa. The parasite is prevalent in many regions of Uganda. Pigs are intermediate hosts for T. solium, and we evaluated a T. solium control program in pigs, involving vaccination of pigs with the TSOL18 vaccine and treatment with oxfendazole. Methods The study was conducted in two districts of Eastern Uganda involving the rural village communities of Bukedea (intervention area) and Kumi (control area) during 2016–2017. Seven hundred and thirty-four households were enrolled in the study. Pigs in the intervention area received intramuscular immunizations with TSOL18 (Cysvax™) and an oral medication with 30 mg/kg oxfendazole (Paranthic™) at approximately 3-monthly intervals for 18 months. Porcine cysticercosis was evaluated by post-mortem examination. At the beginning of the study, 111 pigs were examined. In an interim evaluation in the intervention area, 55 pigs were evaluated 12 months after starting the project. At the end of the study approximately 3 months after the final intervention, 55 pigs from the intervention area and 56 pigs from the control area were evaluated. Results The prevalence of porcine cysticercosis for the two sites was 16.2% at the beginning of the study (17.2% in the intervention area and 15.1% in the control area) with no statistically significant difference (P = 0.759) between the two study sites. Among the 110 animals assessed from the intervention site (55 at the interim evaluation and 55 at the final evaluation), no pig with viable T. solium cysts was found. There was a statistically significant difference between the prevalence at baseline (17.2%) and at the end of the study (0%) in the intervention area (P = 0.001) and a statistically significant difference between the intervention (0%) and control areas (5.4%) (P = 0.041) at the end of the study. Conclusions Three-monthly concurrent vaccination of pigs with the TSOL18 vaccine and medication with oxfendazole eliminated T. solium transmission by the animals involved in the study. Application of vaccination with medication in pigs has the potential to reduce transmission of T. solium in Uganda and other endemic countries.


Agriculture ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 485
Author(s):  
Nnanna N. Unachukwu ◽  
Abebe Menkir ◽  
Adekemi Stanley ◽  
Ebenezer O. Farombi ◽  
Melaku Gedil

Strigahermonthica (Del.) Benth is a parasitic weed that devastates cereals in Sub-Saharan Africa. Several control measures have been proposed for the parasite, of these, host plant resistance is considered the most cost-effective for poor farmers. Some tolerant/resistant lines have been developed and these lines display tolerance/resistance mechanisms to the parasite. A series of studies was done to investigate some of the mechanisms through which a resistant (TZISTR1108) and a susceptible (5057) maize line responds to S. hermonthica infestation, as well as the effects of parasitism on these lines. In this study, TZISTR1108 stimulated the germination and attachment of fewer S. hermonthica plants than 5057, both in the laboratory and on the field. In TZISTR1108, the growth of the S. hermonthica plants, that successfully attached, was slowed. When compared to the un-infested plants, the infested resistant plants showed fewer effects of parasitism than the infested susceptible plants. The infested TZISTR1108 plants were more vigorous, taller and resembled their un-infected counterparts. There were substantial reductions in the stomatal conductance and nitrogen content of the 5057 upon infestation. The resistant inbred line showed multiple mechanisms of resistance to S. hermonthica infestation. It thrives better than the susceptible line by reducing the attachment of S. hermonthica and it delays the parasite’s development.


Weed Science ◽  
2021 ◽  
pp. 1-19
Author(s):  
Olivier Dayou ◽  
Willy Kibet ◽  
Patroba Ojola ◽  
Prakash Irappa Gangashetty ◽  
Susann Wicke ◽  
...  

Abstract The parasitic plant purple witchweed [Striga hermonthica (Del.) Benth.] poses a serious threat to cereal production in sub-Saharan Africa. Under natural infestation, the wild pearl millet [Pennisetum glaucum (L.) R. Br.] line 29Aw demonstrates resistance against the parasite, but the mechanism of its resistance is unknown. Striga resistance can be due to: (i) low induction of Striga germination (pre-attachment resistance) or (ii) inhibition of parasite attachment and development (post-attachment resistance). Germination bioassays and root chamber (rhizotron) resistance screening assays were used to determine the extent of pre- and post-attachment Striga resistance in 29Aw compared with the Striga-susceptible SOSAT-C88-P10 variety. Regarding pre-attachment resistance, 29Aw stimulated 10-fold less Striga seed germination at a maximum germination distance of 7.96 ± 2.75 mm from the host root compared with 35.94 ± 2.88 mm in SOSAT-C88-P10. Post-attachment resistance revealed 10 to 19-fold fewer, 2.5-fold shorter, and 28-fold less Striga seedling biomass growing on 29Aw compared to SOSAT-C88-P10. Microscopic analysis showed that Striga penetration in 29Aw was blocked at endodermis and cortex levels. Post-attachment resistance in 29Aw was further supported by fewer (22%) Striga-host vascular connections in 29Aw compared to 79% in SOSAT-C88-P10. Together, these findings demonstrate that 29Aw harbors both pre- and post-attachment resistance mechanisms against S. hermonthica.


2021 ◽  
Vol 9 ◽  
Author(s):  
Adeola Onasanya ◽  
Michel Bengtson ◽  
Oladimeji Oladepo ◽  
Jo Van Engelen ◽  
Jan Carel Diehl

The control and elimination of schistosomiasis have over the last two decades involved several strategies, with the current strategy by the World Health Organization (WHO) focusing mainly on treatment with praziquantel during mass drug administration (MDA). However, the disease context is complex with an interplay of social, economic, political, and cultural factors that may affect achieving the goals of the Neglected Tropical Disease (NTD) 2021-2030 Roadmap. There is a need to revisit the current top-down and reactive approach to schistosomiasis control among sub-Saharan African countries and advocate for a dynamic and diversified approach. This paper highlights the challenges of praziquantel-focused policy for schistosomiasis control and new ways to move from schistosomiasis control to elimination in sub-Saharan Africa. We will also discuss an alternative and diversified approach that consists of a Systems Thinking Framework that embraces intersectoral collaboration fully and includes co-creating locally relevant strategies with affected communities. We propose that achieving the goals for control and elimination of schistosomiasis requires a bottom-up and pro-active approach involving multiple stakeholders. Such a pro-active integrated approach will pave the way for achieving the goals of the NTD 2021-2030 roadmap for schistosomiasis, and ultimately improve the wellbeing of those living in endemic areas.


Sign in / Sign up

Export Citation Format

Share Document