scholarly journals A Trajectory Planning Model for the Manipulation of Particles in Microfluidics

2018 ◽  
Vol 19 (3) ◽  
pp. 509
Author(s):  
Luca Meacci ◽  
Franciane Fracalossi Rocha ◽  
Arianne Alves Silva ◽  
Petterson Vinicius Pramiu ◽  
Gustavo Carlos Buscaglia

Many important microfluid applications require the control and transport of particles immersed in a fluid. We propose a model for automatically planning good trajectories from an arbitrary point to a target in the presence of obstacles. It can be used for the manipulation of particles using actuators of mechanical or electrical type. We present the mathematical formulation of the model and a numerical method based on the optimization of travel time through the Bellman's principle. The implementation is focused on square grids such as those built from pixelated images. Numerical simulations show that the trajectory tree produced by the algorithm successfully avoids obstacles and stagnant regions of the fluid domain.

1996 ◽  
Vol 07 (04) ◽  
pp. 543-561 ◽  
Author(s):  
WOLFGANG KALTHOFF ◽  
STEFAN SCHWARZER ◽  
GERALD RISTOW ◽  
HANS J. HERRMANN

We present a numerical method to deal efficiently with large numbers of particles in incompressible fluids. The interactions between particles and fluid are taken into account by a physically motivated ansatz based on locally defined drag forces. We demonstrate the validity of our approach by performing numerical simulations of sedimenting non-Brownian spheres in two spatial dimensions and compare our results with experiments. Our method reproduces qualitatively important aspects of the experimental findings, in particular the strong anisotropy of the hydrodynamic bulk self-diffusivities.


2016 ◽  
Vol 809 ◽  
pp. 213-239 ◽  
Author(s):  
M. Akiki ◽  
J. Majdalani

This work focuses on the development of a semi-analytical model that is appropriate for the rotational, steady, inviscid, and compressible motion of an ideal gas, which is accelerated uniformly along the length of a right-cylindrical rocket chamber. By overcoming some of the difficulties encountered in previous work on the subject, the present analysis leads to an improved mathematical formulation, which enables us to retrieve an exact solution for the pressure field. Considering a slender porous chamber of circular cross-section, the method that we follow reduces the problem’s mass, momentum, energy, ideal gas, and isentropic relations to a single integral equation that is amenable to a direct numerical evaluation. Then, using an Abel transformation, exact closed-form representations of the pressure distribution are obtained for particular values of the specific heat ratio. Throughout this effort, Saint-Robert’s power law is used to link the pressure to the mass injection rate at the wall. This allows us to compare the results associated with the axisymmetric chamber configuration to two closed-form analytical solutions developed under either one- or two-dimensional, isentropic flow conditions. The comparison is carried out assuming, first, a uniformly distributed mass flux and, second, a constant radial injection speed along the simulated propellant grain. Our amended formulation is consequently shown to agree with a one-dimensional solution obtained for the case of uniform wall mass flux, as well as numerical simulations and asymptotic approximations for a constant wall injection speed. The numerical simulations include three particular models: a strictly inviscid solver, which closely agrees with the present formulation, and both $k$–$\unicode[STIX]{x1D714}$ and Spalart–Allmaras computations.


2020 ◽  
Vol 13 (1) ◽  
pp. 517-538 ◽  
Author(s):  
Pangwei Wang ◽  
Hui Deng ◽  
Juan Zhang ◽  
Mingfang Zhang

Advancement in the novel technology of connected vehicles has presented opportunities and challenges for smart urban transport and land use. To improve the capacity of urban transport and optimize land-use planning, a novel real-time regional route planning model based on vehicle to X communication (V2X) is presented in this paper. First, considering the traffic signal timing and phase information collected by V2X, road section resistance values are calculated dynamically based on real-time vehicular driving data. Second, according to the topology structure of the current regional road network, all predicted routes are listed based on the Dijkstra algorithm. Third, the predicted travel time of each alternative route is calculated, while the predicted route with the least travel time is selected as the optimal route. Finally, we design the test scenario with different traffic saturation levels and collect 150 sets of data to analyze the feasibility of the proposed method. The numerical results have shown that the average travel times calculated by the proposed optimal route are 8.97 seconds, 12.54 seconds, and 21.85 seconds, which are much shorter than the results of traditional navigation routes. This proposed model can be further applied to the whole urban traffic network and contribute to a greater transport and land-use efficiency in the future.


Author(s):  
Jing Zhang ◽  
Wu Yu ◽  
Xiangju Qu

A trajectory planning model of tiltrotor with multi-phase and multi-mode flight is proposed in this paper. The model is developed to obtain the trajectory of tiltrotor with consideration of flight mission and environment. In the established model, the flight mission from take-off to landing is composed of several phases which are related to the flight modes. On the basis of the flight phases and the flight modes, the trajectory planning model of tiltrotor is described from three aspects: i.e. tiltrotor dynamics including motion equations and maneuverability, flight mission requirements, and flight environment including different no-fly zones. Then, particle swarm optimization algorithm is applied to generate the trajectory of tiltrotor online. The strategy of receding horizon optimization is adopted, and the control inputs in the next few seconds are optimized by particle swarm optimization algorithm. Flight mission simulations with different situations are carried out to verify the rationality and validity of the proposed trajectory planning model. Simulation results demonstrate that the tiltrotor flying with multi-mode can reach the target in three cases and can avoid both static and dynamic obstacles.


2012 ◽  
Vol 40 (2) ◽  
pp. 108-113
Author(s):  
Edwin K.P. Chong ◽  
Scott A. Miller ◽  
Jason Adaska

2020 ◽  
Vol 896 ◽  
pp. 224-228
Author(s):  
Mihai Dupac

In this paper a newly 3D path planning approach and curve generation for design and manufacturing efficiency is considered. The 3D path is generated by a combination of piecewise interpolating curves - along a given number of via-points - created via a spherical coordinate system specified by the polar angles, radial distances and the associated azimuthal angles. Each piecewise interpolating curve is constructed using Hermite polar interpolation in the projective polar plane and the rotating azimuthal plane. To verify the proposed approach, numerical simulations for the generation of a helix design, a 4 and 6 leaf design and a trajectory planning of a picking robot arm are conducted.


Sign in / Sign up

Export Citation Format

Share Document