scholarly journals Numerical Analysis with Experimental Validation of Single-Phase Fluid Flow in a Dimple Pattern Heat Exchanger Channel

2020 ◽  
Vol 66 (9) ◽  
pp. 544-553
Author(s):  
Urban Močnik ◽  
Bogdan Blagojevič ◽  
Simon Muhič

A plate heat exchanger with a dimple pattern heat plate has a large number of dimples. The shape of dimples defines the characteristics of the plate heat exchanger. Although such heat exchangers have become increasingly popular due to their beneficial characteristics, knowledge of the flow characteristics in such kind of channel is poor. A good knowledge of the flow conditions inside of such channel is crucial for the successful and efficient development of new products. In this paper single-phase water flow in dimple pattern plate heat exchanger was investigated with application of computational fluid dynamics and laboratory experiments. Numerical analysis was performed with two turbulence models, Realizable - with enhanced wall treatment function and - SST. The first predicts a slightly smaller pressure drop and the second slightly larger compared to the results of laboratory measurements. Our research found that despite the relatively low velocity of the fluid, turbulent flow occurs in the channel due to its shape. We also found that there are two different flow regimes in the micro plate heat exchanger channel. The first regime is the regime that dominates the heat transfer, and the second is the regime where a recirculation zone appears behind the brazing point, which reduces the surface for heat transfer. The size of the second regime does not change significantly with the velocity of the fluid in the volume considered.

2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Sirine Chtourou ◽  
Hassene Djemel ◽  
Mohamed Kaffel ◽  
Mounir Baccar

AbstractThis study presents a numerical analysis of a laminar counter flow inside small channels plate heat exchanger fitted with Y and C shape obstacles. Using the Computational Fluid Dynamics CFD, an advanced and modern simulation technique, the influence of the geometrical parameters (such as geometry, rib pitch) on the flow characteristics, the thermal and the hydrodynamics performance of the PHE (plate heat exchanger) is investigated numerically. The main goal of this work is to increase the flow turbulence, enhance the heat transfer and the thermal efficiency by inserting new obstacles forms. The computational domain is a conjugate model which is developed by the Computer Aided Design CAD software Solidworks. The results, obtained with Ansys Fluent, show that the presence of the shaped ribs provides enhancement in heat transfer and fluid turbulence. The CFD analysis is validated with the previous study. The non-dimensional factors such as the Nusselt number Nu, the skin friction factor Cf and the thermo-hydraulic performance parameter THPP are predicted with a Reynolds number Re range of 200–800. The temperature and the velocity distribution are presented and analyzed. The Y ribs and the C ribs offer as maximum THPP values respectively about 1.44 and 2.6 times of a smooth duct.


2021 ◽  
pp. 1-19
Author(s):  
Muhammad Ahmad Jamil ◽  
Talha S. Goraya ◽  
Haseeb Yaqoob ◽  
Muhammad Wakil Shahzad ◽  
Syed M. Zubair

1999 ◽  
Vol 121 (1) ◽  
pp. 110-117 ◽  
Author(s):  
A. Muley ◽  
R. M. Manglik

Experimental heat transfer and isothermal pressure drop data for single-phase water flows in a plate heat exchanger (PHE) with chevron plates are presented. In a single-pass U-type counterflow PHE, three different chevron plate arrangements are considered: two symmetric plate arrangements with β = 30 deg/30 deg and 60 deg/60 deg, and one mixed-plate arrangement with β = 30 deg/60 deg. For water (2 < Pr < 6) flow rates in the 600 < Re < 104 regime, data for Nu and f are presented. The results show significant effects of both the chevron angle β and surface area enlargement factor φ. As β increases, and compared to a flat-plate pack, up to two to five times higher Nu are obtained; the concomitant f, however, are 13 to 44 times higher. Increasing φ also has a similar, though smaller effect. Based on experimental data for Re a 7000 and 30 deg ≤ β ≤ 60 deg, predictive correlations of the form Nu = C1,(β) D1(φ) Rep1(β)Pr1/3(μ/μw)0.14 and f = C2(β) D2(φ) Rep2(β) are devised. Finally, at constant pumping power, and depending upon Re, β, and φ, the heat transfer is found to be enhanced by up to 2.8 times that in an equivalent flat-plate channel.


2013 ◽  
Vol 597 ◽  
pp. 63-74 ◽  
Author(s):  
Jan Wajs ◽  
Dariusz Mikielewicz

In the paper the experimental analysis of passive heat transfer intensification in the case of modeled plate heat exchanger is conducted. The plate heat exchanger is chosen for the analysis because this kind of heat exchangers could be prospectively applied in the ORC systems, however other areas or application are equally possible. The experimental set-up was assembled at the Department of Energy and Industrial Apparatus of Gdansk University of Technology. The passive intensification was obtained by a modification of the heat transfer surface. The roughness of surface was increased by use of glass shot.During the experiment single-phase convective heat transfer in the single phase system was studied. The experiment was done in two stages. In the first stage the model of commercial plate heat exchanger was investigated, while in the second stage the identical one but with modified heat transfer surface. Model of heat exchanger consisted of three plates. The direct comparison of thermal and flow characteristics between both devices was possible due to assurance of equivalent conditions at the inlet to the system.The thermal and hydraulic characteristics are presented. The thermal analysis shows that in some range of heat flux density the overall heat transfer coefficient was higher for the commercial heat exchanger, while for the other was higher for the heat exchanger with modified surface. The influence of larger roughness on heat transfer cannot unequivocally be evaluated. Therefore as the next step the systematic investigations of model heat exchangers (only with one hot and one cold passage) will be conducted.


2020 ◽  
Vol 56 (12) ◽  
pp. 3261-3271
Author(s):  
Kitti Nilpueng ◽  
Lazarus Godson Asirvatham ◽  
Ahmet Selim Dalkılıç ◽  
Omid Mahian ◽  
Ho Seon Ahn ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document