scholarly journals Resin Content and Board Density Dependent Mechanical Properties of One-Layer Particleboard Made from Willow (Salix viminalis)

2016 ◽  
Vol 67 (2) ◽  
pp. 127-131 ◽  
Author(s):  
Krzysztof Warmbier ◽  
Maciej Wilczyński



2021 ◽  
Author(s):  
Wan Mohd Nazri Wan Abdul Rahman ◽  
Nur Sakinah Mohamed Tamat ◽  
Nor Yuziah Mohd Yunus ◽  
Jamaludin Kasim

Oriented strand board (OSB) is generally used for sheathing in residential walls, floors, and roofs. Because of its low pricing and utilisation of tiny diameter logs from fast-growing trees and thinning logs as raw materials, OSB is anticipated to gain popularity. In chapter, board properties of OSB using smaller strand size of Leucaena leucocephala as core layer had been studied. Small strand size of S3 (length = 75 mm, width = 3.2 to 6.3 mm) was located in the middle layer of the board while bigger strand sizes of S1 (length = 75 mm, width = 12.7 to 19.0 mm) and S2 (length = 75 mm, width = 6.3 to 12.7 mm) were located at the face and back layers. Utilization of smaller strands (S3) in the middle layers may yield boards that have better physical and mechanical properties. Except for MOR in the minor axis, board density and resin content were shown to have a substantial impact on physical and mechanical properties. Except for MOR in the major axis, strand size had little affected on physical and mechanical properties. The effects of board density on mechanical properties were discovered to affect significantly different. With a positive correlation, board density had a significant effect on thickness swelling. Between S1+S3 and S2+S3 strand size, there is no significant effect on bending properties, internal bond strength and thickness swelling. The effect of resin content on bending properties revealed a significant difference of MOR in major axis, as well as MOE values in both major and minor axes. Even when the resin content was as low as 5%, all treatments of OSB passed the general requirement of general purpose OSB.



2011 ◽  
Vol 183-185 ◽  
pp. 2073-2077
Author(s):  
Alun ◽  
Yi Xing Liu ◽  
Yan Ma ◽  
Xian Quan Zhang ◽  
Ri Dun Hu

In this paper, we focused on a new decorative light density board with a new fiber unit-- micron wood flake, which were large size in length and a very small size in thickness. With these flakes, we processed the light density board in the laboratory, Cunninghamia lanceolata abounded in Fujian Province, Paulownia tomentosa from Anhui Province, L.gemelini Rupr., and Betulaceae abounded in Northeast of China were selected as raw materials, and modified UF as resin. Then several single factor experiments were conducted to discuss the effects of the factors on the physical and mechanical properties of the board, such as board density, resin content, and species of trees as well. The results showed that the density and resin content had significant effects on the mechanical properties of the board. The physical and mechanical properties of the samples, density ranged from 0.3 to 0.5g/cm3, reached Japanese Light Particleboard Standard JISA5908, and the thermal conduction of the board processed with the four species tree were just like solid wood.



2010 ◽  
Vol 7 (2) ◽  
pp. 57
Author(s):  
Jamaludin Kasim ◽  
Shaikh Abdul Karim Yamani ◽  
Ahmad Firdaus Mat Hedzir ◽  
Ahmad Syafiq Badrul Hisham ◽  
Mohd Arif Fikri Mohamad Adnan

An experimental investigation was performed to evaluate the properties of cement-bonded particleboard made from Sesendok wood. The target board density was set at a standard 1200 kg m". The effect offarticle size, wood to cement ratio and the addition ofsodium silicate and aluminium silicate on the wood cement board properties has been evaluated. A change ofparticle size from 1.0 mm to 2.0 mm has a significant effect on the mechanical properties, however the physical properties deteriorate. Increasing the wood to cement ratio from 1:2.25 to 1:3 decreases the modulus ofrupture (MOR) by 11% and the addition ofsodium silicate improves valuesfurther by about 28% compared to the addition ofaluminum silicate. The modulus ofelasticity (MOE) in general increases with increasing cement content, but is not significantly affected by the addition ofsodium silicate or aluminium silicate, although the addition of their mixture (sodium silicate andaluminium silicate) consistentlyyields greater MOE values. Water absorption and thickness swelling is significantly affected by the inclusion ofadditives and better values are attained using higher wood to cement ratios.



1994 ◽  
Vol 349 ◽  
Author(s):  
Yang-Duk Park ◽  
Chul-Woo Kim ◽  
Young-Dae Seo

ABSTRACTPreparation of high density graphite materials from coal tar pitch was investigated. The effect of β-resin content on the mechanical properties of graphite solid prepared from semi-coke, which was prepared by wet milling method, was examined. β-Resin content was effective for fabrication of green bodies without lamination and for improving the mechanical properties of graphite materials.



BioResources ◽  
2019 ◽  
Vol 15 (1) ◽  
pp. 935-944
Author(s):  
Peng Luo ◽  
Chuanmin Yang ◽  
Mengyao Li ◽  
Yueqi Wang

Reducing particleboard thickness is one of the major approaches to decrease consumption volume of particleboard for furniture manufacture. This study employed an adhesive mixture of polymeric methane diphenyl diisocyanate (PMDI) and urea formaldehyde (UF) to produce single-layer medium density thin rice straw particleboard. The effects of various PMDI/UF formulations as well as board density on mechanical properties and water resistance of rice straw particleboard were studied. The results indicated that the mechanical properties and water resistance of the thin rice straw particleboard were appreciably affected by resin formulation. The panels bonded with PMDI/UF adhesive mixtures had mechanical properties and water resistance far superior to those bonded with UF. Higher PMDI content levels in resin mixtures led to improved mechanical properties and water resistance. Density influenced mechanical properties and water resistance of the thin rice straw particleboard. Increasing the density of the panel could upgrade the mechanical properties of the thin rice straw particleboard. The experimental outcomes showed that PMDI/UF resin systems had potential to substitute for pure PMDI resin in producing thin rice straw particleboard, which could effectively lower manufacturing cost and bring economic efficiencies due to reduced amount of pricey PMDI.



2021 ◽  
Vol 3 (1) ◽  
pp. 41-44
Author(s):  
Nur Wafa Amalina Amali ◽  
Nor Yuziah Mohd Yunus ◽  
Wan Mohd Nazri Wan Abdul Rahman

In this study, mechanical properties of commercially manufactured hybrid particleboard from mix-tropical wood and rubberwood with four different densities at 25mm thickness have been investigated. The particleboard sample cutting and testing was in accordance to EN312:2013. The density of particleboard is identified with interval of 10kg/m3 for different densities which include 660kg/m3, 670kg/m3, 680kg/m3 and 690kg/m3. Particleboards were made with the ratio of 40:60 for mix-tropical wood particle and rubberwood particle respectively. The particleboards were prepared with urea formaldehyde (UF) with E1 formulation with addition of wax and hardener.  Increment of 10kg/m3 density for each particleboard led to increase in internal bonding (IB), bending testing include modulus of rupture (MOR) and modulus of elasticity (MOE), surface soundness (SS) and screw edge (SE) withdrawal. It was found that with board increment of 10kg/m3, the improvement was not statically significant except that for MOR. All panels met the minimum requirements of standard.



2011 ◽  
Vol 183-185 ◽  
pp. 2173-2177 ◽  
Author(s):  
Xin Ying Lv ◽  
Die Ying Ma ◽  
Yong Ming Song ◽  
Zhen Hua Gao

Novel Kraft fiber reinforced unsaturated polyester (UPE) composites were prepared at various molding pressures in order to investigate the effects of molding pressure on resin content, the mechanical properties and creep resistance. The results indicated that the novel composites had much higher mechanical properties and better creep resistances than traditional wood plastic composites because of the applications of strong Kraft fibers as reinforcement and thermosetting UPE as matrix. Molding pressure had various effects on the many properties of composites. With molding pressure increased from 6MPa to 25MPa, the mechanical properties and creep resistances increased gradually until about 20MPa and then decreased, which were attributed to the different interface adhesions between UPE resin and Kraft fibers at various molding pressures as evidenced by DMA analysis. Benefited from the use of low-viscosity UPE resin, the resin content of Kraft fiber reinforced UPE composites could reduce to 28.3% while strength and creep resistance were still much better than that of the thermoplastic wood-plastic composite (WPC) with 40% polymer matrix.



2020 ◽  
Vol 101 ◽  
pp. 102632
Author(s):  
Ana Antunes ◽  
João Pereira ◽  
Nádia Paiva ◽  
João Ferra ◽  
Jorge Martins ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document