Eco-labeled wood products in the U.S. residential construction industry: Architects’ awareness and usage of certified wood and green building programs

2014 ◽  
Vol 90 (05) ◽  
pp. 605-613 ◽  
Author(s):  
Tait Bowers ◽  
Indroneil Ganguly ◽  
Ivan Eastin

The use of environmentally friendly building materials has experienced slow growth within the residential construction market due to higher cost and low availability of certified wood. The development of green building programs (GBPs) marked the beginning of the effort to adopt energy-efficient design guidelines and utilize eco-friendly renewable materials in structures. These programs were targeted at reducing environmental impacts by integrating eco-friendly materials into the design and construction of buildings, including promoting the use of environmentally certified wood products (ECWPs) harvested from sustainably managed forests. This research was designed to determine which attributes influence architects’ decisions to use environmentally certified wood products in residential construction projects and how this might influence their perceptions and use of green building programs. The results indicate that architects who have participated in a GBP were more likely to have used ECWPs. The material attributes that influence architects’ selection of materials are mainly related to economics and function as opposed to environmental friendliness. These results will help to inform and broaden the understanding of issues that influence the adoption and utilization of environmentally certified wood products, and identify some of the factors that can contribute to their continued growth in the U.S. marketplace.

2012 ◽  
Vol 88 (05) ◽  
pp. 593-599 ◽  
Author(s):  
Daisuke Sasatani ◽  
Ivan Eastin

As green building programs (GBPs) are introduced in Asian countries, the question of how GBPs evaluate the “greenness” of construction practice becomes one of the most critical uncertainties for the building material industry. To better understand construction professionals’ perception of greenness and the greenness of different building materials in Japan and China, surveys were conducted in both countries in 2009 and 2010. The surveys were designed to evaluate professionals’ perceptions of the relative importance of the major environmental attributes of resource efficiency. Chinese and Japanese professionals ranked the environmental attributes similarly even though their construction practices are very different. They perceive that saving energy and saving water are substantially more important environmental attributes than using renewable materials, having a low carbon footprint and using recycled materials. Second, the survey was designed to gain insights into the respondents’ perceptions of the relative environmental performance of the three major structural building materials (wood, concrete and steel). In both countries, construction professionals perceive lumber as having the best environmental performance relative to concrete and steel. However, Chinese and Japanese professionals have different perceptions of lumber in terms of its environmental friendliness. In Japan, energy efficiency of houses, the level of pollution generated during the manufacturing process, and CO2 emissions contribute to the evaluation of the environmental friendliness of lumber. In China, the sustainability of the resource is the main factor perceived as promoting the environmental friendliness of lumber.


2011 ◽  
Vol 41 (2) ◽  
pp. 390-400 ◽  
Author(s):  
Chris Knowles ◽  
Christine Theodoropoulos ◽  
Corey Griffin ◽  
Jennifer Allen

Buildings have been shown to have impacts on the environment. Consequently, green building rating systems have become a tool to help reduce these impacts. The objectives of this study were to identify gaps in information and access to green building materials as viewed by Oregon design professionals. The scope was limited to the major structural materials: concrete, steel, and wood. This article focuses on the results unique to wood products. Information was collected through group interviews. Each group was composed of professionals representing different aspects of material selection and construction of different scales. The results showed that structural material selection is driven by building code, cost, and building performance requirements. The environmental performance of the material was not considered. However, once the material was selected, designers tried to maximize environmental performance. The results showed that green building rating systems do not influence structural material selection, and interviewees noted that there is room for improvement in this area. Respondents had a positive view of wood and a strong desire to use more wood, particularly Forest Stewardship Council certified wood. Wood was viewed as the most sustainable structural material available. However, there were some concerns about wood products, with formaldehyde emissions being the most significant.


2019 ◽  
Vol 8 (4) ◽  
pp. 270-291 ◽  
Author(s):  
Kate Krueger ◽  
Adam Stoker ◽  
Gabrielle Gaustad

Purpose The construction, use and demolition of buildings carry enormous environmental burdens. As one step to reduce a building’s environmental impact, green building design guidelines and certification programs, such as Leadership in Energy and Environmental Design, Cradle to Cradle and the Whole Building Design Guide, promote the specification of alternative, non-traditional building materials. Alternative materials carry a variety of potential benefits: reducing the amount of energy and other resources needed to create building materials; creating healthier indoor and outdoor environments; diverting or reducing waste from landfills; reducing the use of scarce, critical or economically volatile materials; and spurring innovation in the building industry. However, a lack of clarity surrounds alternative materials and creates a barrier to their usage. The purpose of this paper is to review definitions of alternative materials in various design guidelines in order to provide context to their specification and usage. Design/methodology/approach Through a survey of green building programs and guidelines, existing literature on alternative materials, and life-cycle assessment using multiple inventory databases, this study tackles the following questions: what constitutes an alternative building material; what are the current barriers to their specification; how are they specified in the most common design guidelines; and do alternative building materials present a “greener” alternative? Findings These results show that while often alternative materials do in fact show promise for reducing environmental impacts of the built environment, by how much can be a challenging question to quantify and depends on a variety of factors. While many green building guides and certification systems provide recommendations for use of alternative materials, the sheer diversity and uncertainty of these systems coupled with the complexity in understanding their impacts still present a significant barrier to their specification. Much work remains in a variety of disciplines to tackle these barriers. A clear emphasis should be on better understanding their environmental impacts, particularly with respect to the context within the built environment that their specification will provide energy, resource and emission savings. Other key areas of significant work include reducing costs, removing regulatory and code barriers, and educating designers, consumers, and end-users. Originality/value Alternative materials are defined and specified in a diversity of contexts leaving the design and construction communities hesitant to promote their use; other work has found this to be a key barrier to their widespread usage. By compiling definitions, barriers and design guidelines instructions while also exploring analytically the benefits of specific cases, this work provides a foundation for better understanding where new, more sustainable materials can be successfully specified.


2020 ◽  
Vol 12 (22) ◽  
pp. 9482 ◽  
Author(s):  
Amirhossein Balali ◽  
Alireza Valipour ◽  
Edmundas Kazimieras Zavadskas ◽  
Zenonas Turskis

Modern, well-educated and experienced policy-makers support and promote the use of environmentally friendly materials and resources. The use of green resources is an exceptional and inevitable strategy to meet the needs of a rapidly growing Earth population. The growing population raises the need for new housing construction and urban infrastructure development. Such substances in construction refer to green building materials (GBMs). The environmental impact is lower if GBMs replace non-GBMs. Here, ranking among GBMs can facilitate and support the selection process. This study aimed to contribute to the body of knowledge to introduce a method for identifying and prioritizing GBMs in the construction industry to use in green building. The required data were collected using existing literature, interviews and questionnaires. Relevant Sustainable Development Goals (SDGs) are the first criteria for assessing GBM selection criteria. Critical weighted GBM selection criteria are the second criteria for prioritizing GBMs. The results show that “Natural, Plentiful and Renewable”, “Affordability from cradle to gate” and “Affordability during operation” are the top three GBM selection criteria. The real case study helped select “Stramit Strawboard”, “Aluminium Composite Panels (ACPs)” and “Solar Roof Tiles” as the most suitable GBMs for use in the context of the study. The model and results presented in this study will help actors of the construction industry to select and use GBMs more quickly and thus achieve a better level of construction sustainability, as well as environmental friendliness, than before.


Encyclopedia ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 472-481
Author(s):  
Nasim Aghili ◽  
Mehdi Amirkhani

Green buildings refer to buildings that decrease adverse environmental effects and maintain natural resources. They can diminish energy consumption, greenhouse gas emissions, the usage of non-renewable materials, water consumption, and waste generation while improving occupants’ health and well-being. As such, several rating tools and benchmarks have been developed worldwide to assess green building performance (GBP), including the Building Research Establishment Environmental Assessment Method (BREEAM) in the United Kingdom, German Sustainable Building Council (DGNB), Leadership in Energy and Environmental Design (LEED) in the United States and Canada, Comprehensive Assessment System for Built Environment Efficiency (CASBEE) in Japan, Green Star in Australia, Green Mark in Singapore, and Green Building Index in Malaysia. Energy management (EM) during building operation could also improve GBP. One of the best approaches to evaluating the impact of EM on GBP is by using structural equation modelling (SEM). SEM is a commanding statistical method to model testing. One of the most used SEM variance-based approaches is partial least squares (PLS), which can be implemented in the SmartPLS application. PLS-SEM uses path coefficients to determine the strength and significance of the hypothesised relationships between the latent constructs.


2021 ◽  
Author(s):  
Hannah Rae Roth ◽  
Meghan Lewis ◽  
Liane Hancock

2020 ◽  
Vol 165 ◽  
pp. 04029
Author(s):  
Zhang Cui

Architecture is the soul of city color. The planning focus of city color is city architecture, especially the planning control of the main wall color of street buildings. The design of architectural color should not only consider the surrounding environment of the building, the content of the building and the building materials, but also proceed from the aesthetic needs and conform to the principle of color engineering. On this basis, the plan proposes color design guidelines and relies on scientific and standardized “urban building color design guidelines” to achieve the purpose of maintaining the original appearance of history and creating a new era style. Besides the traditional buildings, the other “architectural color guidelines” should leave more room for manoeuvre and not restrict the creative thinking of architects.


Sign in / Sign up

Export Citation Format

Share Document