Regeneration of Northern Hardwoods Under Shelterwood Cutting

1969 ◽  
Vol 45 (5) ◽  
pp. 333-337 ◽  
Author(s):  
Carl H. Tubbs ◽  
Frederick T. Metzger

Shelterwood regeneration cuts were made on hemlock-hardwood and sugar maple sites in mature timber. On both sites three understory treatments were compared: (1) no treatment, (2) all advance regeneration poisoned, and (3) all advance regeneration poisoned and the plots scarified.Sugar maple responded well on untreated plots of the sugar maple site. Removing competition by poisoning stimulated yellow birch establishment on both sites, and removing competition plus scarifying, yielded the most yellow birch on both sites. However, yellow birch regeneration predominated on the treated areas of the hemlock-hardwood site, while sugar maple regeneration predominated on comparable areas of the sugar maple site.

2004 ◽  
Vol 21 (3) ◽  
pp. 117-122 ◽  
Author(s):  
Ralph D. Nyland ◽  
David G. Ray ◽  
Ruth D. Yanai

Abstract Knowledge of the relative rates of height growth among species is necessary for predicting developmental patterns in even-aged northern hardwood stands. To quantify these relationships, we used stem analysis to reconstruct early height growth patterns of dominant and codominant sugar maple (Acer saccharum Marsh.), yellow birch (Betula alleghaniensis Britton), white ash (Fraxinus americana L.), and America beech (Fagus grandifolia Ehrh.) trees. We used three stands (aged 19, 24, and 29 years) established by shelterwood method cutting preceded by an understory herbicide treatment. We analyzed 10 trees of each species per stand. Height growth was similar across stands, allowing us to develop a single equation for each species. Our data show that yellow birch had the most rapid height growth up to approximately age 10. Both sugar maple and white ash grew more rapidly than yellow birch beyond that point. Beech consistently grew the slowest. White ash had a linear rate of height growth over the 29-year period, while the other species declined in their growth rates. By age 29, the heights of main canopy trees ranged from 38 ft for beech to 51 ft for white ash. Both yellow birch and sugar maple averaged 46 ft tall at that time. By age 29, the base of the live crown had reached 17, 20, 21, and 26 ft for beech, sugar maple, yellow birch, and white ash, respectively. Live–crown ratios of upper-canopy trees did not differ appreciably among species and remained at approximately 40% for the ages evaluated. These results suggest that eliminating advance regeneration changes the outcome of competition to favor species other than beech. North. J. Appl. For. 21(3):117–122.


1991 ◽  
Vol 8 (3) ◽  
pp. 99-104 ◽  
Author(s):  
Peter R. Hannah

Abstract Study plots (1/4 ac) were located in four northern hardwood stands in Vermont, and shelterwood canopy covers of 40, 60, 80, and 100%, and a control (no cutting) were established. Regeneration on small plots within the treated areas was sampled over a 3-year period and the composition of saplings determined after 6 years. While there were substantial increases in amount of regeneration under most canopy covers, there was no significant differences due to treatment. Some important trends, however, were evident. Sugar maple showed some increase in seedling density under most canopy densities with up to 68,000 new sugar maple seedlings per acre under 60% canopy cover. Yellow birch did best under 40 to 80% canopy cover and with good soil scarification. White ash increased under most densities but was best at about 80% canopy cover. Competitors, beech, striped maple, and hobblebush, increased under most densities. At about 60% canopy cover and less, raspberries and blackberries, pin cherry, and other shade-intolerant species increase in abundance. Among regeneration less than 3 ft all after 3 years, preferred species outnumbered less preferred species by 5 to 1. Among regeneration over 3 ft tall when examined 6 years after treatment, the less preferred species, on average, outnumber preferred species by 2 to 1 (sugar maple 0-3430/ac, yellow birch 0-1920/ac, beech 200-2220/ac and striped maple 0-3130/ac). Most beech regeneration seemed to arise as root suckers. Small striped maple grew rapidly and assumed dominance among the regeneration when released. Northern hardwoods have diverse composition in the overstory, and much of the regeneration tallied after 3 years was already in place when the shelterwood cuts were made. Advanced regeneration as well as new regeneration is the key to success, or failure, if it is predominantly undesirable species. In implementing a shelterwood in northern hardwoods, 60 to 80% canopy cover seems good for most species. All trees below the main canopy should be cut to create a high canopy shade. Undesirable species should be controlled by cutting or possibly herbicides before or when the stand is cut, with additional treatment as necessary to maintain desired composition. North. J. Appl. For. 8(3):99-104.


2020 ◽  
Author(s):  
Ralph D Nyland ◽  
Eddie Bevilacqua ◽  
David A Ruff ◽  
Diane H Kiernan

Abstract Tree diameter growth models for northern hardwoods commonly used large data sets representing a composite of stands with varying management histories, structural characteristics, and age distributions. Yet common predictor variables like diameter can show differences in growth patterns for stands with different age structures and management histories. To address that, we modeled growth and mortality for sugar maple, red maple, and yellow birch in thinned even-aged Adirondack northern hardwoods. Findings indicate that change in diameter depends on initial diameter for sugar maple, with the rate decreasing exponentially from the largest size class to the smallest. Initial diameter did not prove significant with red maple and yellow birch in these thinned stands, perhaps because of the limited sample of trees of small diameter. Stand relative density and time since treatment affected growth for all three species. Those variables also proved significant for predicting mortality of sugar maple. Analyses revealed fewer losses of sugar and red maples among the larger diameter classes, but no relationship with diameter for yellow birch. Plot relative density did not affect mortality with red maple, but time after thinning had a significant effect on survival of all species. Study Implications Crown thinning and other methods that release upper canopy trees within even-aged stands should result in favorable postthinning growth of sugar maple, red maple, and yellow birch. Yet, the small trees of sugar maple will grow slower than larger ones after release by thinning, and small sugar and red maple have greater probability of dying. Residual stand density will temper the growth of all three species and the survival of sugar maple and yellow birch. Findings suggest that management strategies favoring removal of the large-diameter sugar maple trees of upper canopy positions from an even-aged stand (e.g., diameter-limit cutting) will result in lower rates of diameter increment within the residual stand. That should negatively affect stand dynamics and volume production and result in greater mortality among the remaining sugar and red maple. By contrast, crown thinning will enhance residual tree growth and survival, as well as stand development.


1985 ◽  
Vol 61 (3) ◽  
pp. 229-232 ◽  
Author(s):  
Jean-Louis Boivin

Clearcutting of 20, 40 and 60 m wide strips was done in 1970 in Malakoff township, in the lower part of the Dumoine river watershed. A regeneration study took place in 1984.Analysis of results shows that the strips are well regenerated. The proportion of yellow birch grows with the width of the strips, that is, from 20 to60 m. To this effect strips of 60 m seem to be better for regenerating yellow birch but the future of this species seems to be better ensured in 40-m-wide strips.Yellow birch and sugar maple constitute the main part of the actual stands. If treatment is done and if observed trends persist, yellow birch should account for 21, 26 and 44% of the stems in mature stands of the 20-, 40- and 60-m strips respectively. With treatment, the presence of yellow birch could be increased to nearly 48%.


Author(s):  
Alex Noel ◽  
Jules Comeau ◽  
Salah-Eddine El Adlouni ◽  
Gaetan Pelletier ◽  
Marie-Andrée Giroux

The recruitment of saplings in forest stands into merchantable stems is a very complex process, thus making it challenging to understand and predict. The recruitment dynamics in the Acadian Forest Region of New Brunswick are not well known or documented. Our objective was to draw an inference from existing large scale routine forest inventories as to the different dynamics behind the recruitment from the sapling layer into the commercial tree size layer in terms of density and occurrence of sugar maple (Acer saccharum Marsh.) and yellow birch (Betula alleghaniensis Britt.) following harvesting, by looking at many factors on a wide range of spatial and temporal scales using models. Results suggest that the variation in density and probability of occurrence is best explained by the intensity of silvicultural treatment, by the merchantable stem density in each plot, and by the proportion of merchantable basal area of each group of species. The number of recruits of sugar maple and yellow birch stems tend be higher when time since last treatment increases, when mid to low levels of silvicultural treatment intensity were implemented, and within plots having intermediate levels of merchantable stem density. Lastly, our modeling efforts suggest that the probability of occurrence and density of recruitment of both species tend to increase while its share of merchantable basal area increases.


1987 ◽  
Vol 17 (3) ◽  
pp. 263-266 ◽  
Author(s):  
A. R. C. Jones ◽  
I. Alli

During the spring of 1984 and 1985, white birch (Betulapapyrifera Marsh), sweet birch (B. lenta L), and yellow birch (B. alleghaniensis Britt.) were tapped to determine sap yields and syrup characteristics. These properties were compared with sap yields and syrup produced from sugar maple (Acersaccharum Marsh) and red maple (A. rubrum L). The sap flow seasons were as follows: white birch, 23 days (April 7–29, 1984) and 29 days (April 5 – May 3, 1985); sweet birch, 26 days (1984); yellow birch, 25 days (1985). The sap flow season for the maple species was much earlier than the birch species. Maple sap flow seasons were as follows: sugar maple, 16 days (March 28 – April 12, 1984) and 45 days (March 10 – April 23, 1985); red maple, 44 days (March 11 – April 23, 1985). Sap yields were as follows: white birch, 80.5 L in 1984 (1.0% sap) 51.0 L in 1985 (1.0% sap); sweet birch, 48.0 L in 1984 (0.5% sap); yellow birch, 28.4 L in 1985 (0.5% sap); red maple, 30.6 L in 1985 (2.3% sap); sugar maple, 53.5 L in 1985 (4.5% sap). Sap analyses showed the average total carbohydrate content of all birch saps and all maple saps was 9.2 and 24.5 g/L, respectively. The average sugar contents of the syrups from the birch saps and the maple saps were 302 and 711 g/L, respectively. The average pH of birch and maple saps were similar but the average pH of the syrups obtained from the birch saps was substantially lower than that of the syrups obtained from the maple saps.


2013 ◽  
Vol 89 (04) ◽  
pp. 512-524 ◽  
Author(s):  
Martin Béland ◽  
Bruno Chicoine

We examined applicability of various partial cutting systems in order to regenerate tolerant hardwood stands dominated by sugar maple (Acer saccarhum), American beech (Fagus grandifolia) and yellow birch (Betula alleghaniensis) on northern New Brunswick J.D. Irving Ltd. freehold land. Sampling of 1065 one-m2 plots in 31 stands managed by selection cutting, shelterwood method and strip or patch cutting and in six control stands allowed a 15-year retrospective study of natural regeneration in stands of low residual densities and with minimal soil disturbance and no control of competing vegetation. Beech regeneration was most abundant in the patch cuts, yellow birch in shelterwood stands and sugar maple in the selection system areas. Results suggest that initial stand conditions influence the composition of the regeneration more than the prescribed treatment. At the stand scale (a few hectares), sugar maple recruitment was positively influenced by its proportion in the initial stand, and negatively by the cover of herbs and shrubs. Yellow birch regeneration was mainly affected by shrub competition. At the plot (1 m2) scale, mineral soil and decayed wood substrates and ground-level transmitted light were determinant factors for yellow birch regeneration. Beech-dominated stands were likely to regenerate to beech. A dense beech sucker understory was promoted in harvested patches. Areas with dense understory of American beech, shrubs, or herbs require site preparation to reduce interference either before or at the time of partial cutting. Shelterwood seed cutting and selection cutting should leave a residual of 12 m2/ha and 17 m2/ha respectively in seed trees uniformly distributed.


1944 ◽  
Vol 22c (1) ◽  
pp. 1-6 ◽  
Author(s):  
L. P. V. Johnson

White and yellow birch trees produced an abundance of sap, but the yield of sugar was on the average only about one-third that of the sugar maple. Results indicate that yellow birch sap contains invert sugar with small amounts of sucrose, and that white birch sap contains a mixture of fructose and invert sugar. Syrups prepared from white and yellow birch saps by concentrating 100 times were similar in taste and appearance to commercial corn syrup.


1971 ◽  
Vol 1 (2) ◽  
pp. 113-120 ◽  
Author(s):  
André Lavallée ◽  
Alain Bard

Xylem of sugar maple and yellow birch trees were exposed to natural infection by making axe blazes to simulate mechanical injuries. After 8, 21, and 34 months, dissection and isolations made from the discolored wood permitted the localization of certain microorganisms in three arbitrarily determined zones. Longitudinal and radial development of discoloration associated with wounds was more rapid in yellow birch than in sugar maple. There was evidence of a succession of organisms in the colonization of the wounds which was subsequent to the first discoloration process and involved different organisms in the two hosts. In general, decay fungi did not appear until after 21 months. Cytosporadecipiens occurred exclusively in discolored wood of sugar maple while Phialophora spp. and Cephalosporium sp. dominated the discolored wood of yellow birch. Bacteria were more frequent in yellow birch than in sugar maple. Relationships between size of injuries, linear extent of the discoloration produced, and identity of the various organisms involved are also presented.


Sign in / Sign up

Export Citation Format

Share Document