Phase Transition and Elastic Properties of Zinc Sulfide Under High Pressure from First Principles Calculations

2011 ◽  
Vol 66 (10-11) ◽  
pp. 656-660
Author(s):  
Dai Wei ◽  
Song Jin-Fan ◽  
Wang Ping ◽  
Lu Cheng ◽  
Lu Zhi-Wen ◽  
...  

A theoretical investigation on structural and elastic properties of zinc sulfide semiconductor under high pressure is performed by employing the first-principles method based on the density functional theory. The calculated results show that the transition pressure Pt for the structural phase transition from the B3 structure to the B1 structure is 17:04 GPa. The calculated values are generally speaking in good agreement with experiments and with similar theoretical calculations.

Symmetry ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 972 ◽  
Author(s):  
Fang Yu ◽  
Yu Liu

A calculation program based on the density functional theory (DFT) is applied to study the structural, mechanical, and electronic properties of TiV alloys with symmetric structure under high pressure. We calculate the dimensionless ratio, elastic constants, shear modulus, Young’s modulus, bulk modulus, ductile-brittle transition, material anisotropy, and Poisson’s ratio as functions of applied pressure. Results suggest that the critical pressure of structural phase transition is 42.05 GPa for the TiV alloy, and structural phase transition occurs when the applied pressure exceeds 42.05 GPa. High pressure can improve resistance to volume change, as well as the ductility and atomic bonding, but the strongest resistances to elastic and shear deformation occur at P = 5   GPa for TiV alloy. Furthermore, the results of the density of states (DOS) indicate that the TiV alloy presents metallicity. High pressure disrupts the structural stability of the TiV alloy with symmetry, thereby inducing structural phase transition.


Author(s):  
Linfei Yang ◽  
Jianjun Jiang ◽  
Lidong Dai ◽  
Haiying Hu ◽  
Meiling Hong ◽  
...  

The vibrational, electrical and structural properties of Ga2S3 were explored by Raman spectroscopy, EC measurements, HRTEM and First-principles theoretical calculations under different pressure environments up to 36.4 GPa.


2010 ◽  
Vol 25 (12) ◽  
pp. 2317-2324 ◽  
Author(s):  
Hui-Yuan Wang ◽  
Wen-Ping Si ◽  
Shi-Long Li ◽  
Nan Zhang ◽  
Qi-Chuan Jiang

The formation enthalpy, electronic structures, and elastic moduli of the intermetallic compound Ti5Si3 with substitutions Zr, V, Nb, and Cr are investigated by using first-principles methods based on the density-functional theory. Our calculation shows that the site occupancy behaviors of alloying elements in Ti5Si3, determined by their atom radius, are consistent with the available experimental observations. Furthermore, using the Voigt–Reuss–Hill (VRH) approximation method, we obtained the bulk modulus B, shear modulus G, and the Young’s modulus E. Among these four substitutions, the V, Nb, and Cr substitutions can improve the ductility of Ti5Si3 effectively, while Zr substitution has little effect on the elastic properties of Ti5Si3. The elastic property variations of Ti5Si3 due to different substitutions are found to be correlated with the Me4d–Me4d antibonding and the strengthened Me4d–Si bonding in the solids.


Author(s):  
Saheli Banerjee ◽  
Alka B Garg ◽  
H. K. Poswal

Abstract In this article we report the synthesis, characterization and high pressure investigation on technologically important, rare earth orthotantalate, EuTaO4. Single phase polycrystalline sample of EuTaO4 has been synthesized by solid state reaction method adopting monoclinic M'-type fergusonite phase with space group P2/c. Structural and vibrational properties of synthesized compound are investigated using synchrotron based x-ray powder diffraction, and Raman spectroscopic techniques respectively. Both the techniques show presence of an isostructural, first order, reversible phase transition near 17 GPa. Bulk modulus obtained by fitting the experimental pressure volume data for low pressure and high pressure phase is 136.0(3) and 162.8(21) GPa. High pressure phase is accompanied by an increase in coordination number around Ta atom from 6 to 8. First principles calculations under the frame work of density functional theory (DFT) also predicts the isostructural phase transition and change in coordination around Ta atom, corroborating the experimental findings.


2015 ◽  
Vol 14 (04) ◽  
pp. 1550024 ◽  
Author(s):  
Ying-Chun Ding ◽  
Min Chen ◽  
Wen-Juan Wu

The structural stability and mechanical and thermodynamic properties of WII- A 3 N 4 ( A=C , Si , Ge and Sn ) are calculated by first-principles calculations based on the density functional theory. The calculated lattice parameters and elastic constants of WII- A 3 N 4 ( A=C , Si , Ge and Sn ) are in good agreement with the experimental data and previously calculated values. WII- A 3 N 4 ( A=C , Si , Ge and Sn ) compounds are also found to be thermodynamically and mechanically stable. The results suggest that hardness of WII- C 3 N 4 is the hardest of these C 3 N 4 polymorphs. The hardness of WII- Sn 3 N 4 is the smallest among WII- A 3 N 4 ( A=C , Si , Ge and Sn ). Furthermore, the mechanical anisotropy, Debye temperature, the minimum thermal conductivity and thermodynamic properties of WII- A 3 N 4 ( A=C , Si , Ge and Sn ) compounds can be investigated.


2010 ◽  
Vol 24 (15n16) ◽  
pp. 2749-2755 ◽  
Author(s):  
YE WEI ◽  
YING ZHANG ◽  
GUANG-HONG LU ◽  
HUIBIN XU

We employed a first-principles method based on the density functional theory to investigate the effect of impurity O on the site preference and elastic properties of α2- Ti 3 Al . We found that the O atom prefers to occupy the Ti -rich octahedral interstitial site in α2- Ti 3 Al . We calculated the elastic constants of α2- Ti 3 Al with single O atom, which demonstrate that the O presence has no large effect on α2- Ti 3 Al according to the empirical criterions. Other factors such as O cluster should be taken into account to understand the deleterious effect of O on α2- Ti 3 Al . Our results provide a useful reference to further study the mechanical properties of TiAl alloys.


2014 ◽  
Vol 577 ◽  
pp. 102-107
Author(s):  
Qiu Xiang Liu ◽  
De Ping Lu ◽  
Rui Jun Zhang ◽  
Lei Lu ◽  
Shi Fang Xie

The structural stability of MgCe under high pressures has been investigated by using the first-principles plane-wave pseudopotential density functional theory within the local density approximation (LDA). The obtained results predict that MgCe in the Ba structure is predicted to be the most stable structure corresponding to the ground state, because of lowest total energy. MgCe undergoes a pressure-induced phase transition from the Ba structure to B32 structure at 36 GPa. And no further transition is found up to 120 GPa. In addition, the electronic structures of four structures of MgCe are also calculated and discussed.


RSC Advances ◽  
2015 ◽  
Vol 5 (73) ◽  
pp. 59648-59654 ◽  
Author(s):  
X. K. Liu ◽  
W. Zhou ◽  
X. Liu ◽  
S. M. Peng

The effects of pressure on the structural and elastic properties of Be12Ti were investigated by the generalized gradient approximation (GGA) with a Perdew–Burke–Ernzerhof (PBE) exchange-correlation function using density-functional theory.


2012 ◽  
Vol 550-553 ◽  
pp. 2805-2809 ◽  
Author(s):  
Ai Min Hao ◽  
Xiao Cui Yang ◽  
Li Xin Zhang ◽  
Qi Zhou Zhang

An investigation on electronic, elastic and thermodynamic properties of VN under high pressure has been conducted using first-principles calculations based on density functional theory (DFT) with the plane wave basis set as implemented in the CASTEP code. At elevated pressures VN is predicted to undergo a structural phase transition from the relatively open NaCl-type structure into the denser CsCl-type atomic arrangement. The predicted transition pressure is 189 GPa. The elastic constants, Debye temperature as a function of pressure and temperature of VN are presented.


Sign in / Sign up

Export Citation Format

Share Document