Saccharomyces Cerevisiae And Probiotic Bacteria Potentially Inhibit Aflatoxins Production In Vitro And In Vivo Studies

10.5580/9ec ◽  
2010 ◽  
Vol 8 (1) ◽  
2012 ◽  
Vol 31 (1) ◽  
pp. 34-45 ◽  
Author(s):  
Alexander G. Schauss ◽  
R. Glavits ◽  
John Endres ◽  
Gitte S. Jensen ◽  
Amy Clewell

A safety evaluation was performed for EpiCor, a product produced by a proprietary fermentation process using Saccharomyces cerevisiae. Studies included the following assays: bacterial reverse mutation, mouse lymphoma cell mutagenicity, mitogenicity assay in human peripheral lymphocytes, and a cytochrome P450 ([CYP] CYP1A2 and CYP3A4) induction assessment as well as 14-day acute, 90-day subchronic, and 1-year chronic oral toxicity studies in rats. No evidence of genotoxicity or mitogenicity was seen in any of the in vitro or in vivo studies. The CYP assessment showed no interactions or inductions. No toxic clinical symptoms or histopathological lesions were observed in the acute, subchronic, or chronic oral toxicity studies in the rat. Results of the studies performed indicate that EpiCor does not possess genotoxic activity and has a low order of toxicity that is well tolerated when administered orally. The no observable adverse effect level (NOAEL) was 1500 mg/kg body weight (bw)/d for the 90-day study and 800 mg/kg bw/d for the 1 year study, for the highest doses tested.


2011 ◽  
Vol 144 (1-3) ◽  
pp. 1358-1369 ◽  
Author(s):  
Woravimol Krittaphol ◽  
Philip A. Wescombe ◽  
Christine D. Thomson ◽  
Arlene McDowell ◽  
John R. Tagg ◽  
...  

2006 ◽  
Vol 27 (1) ◽  
pp. 297-311 ◽  
Author(s):  
Krassimira A. Garbett ◽  
Manish K. Tripathi ◽  
Belgin Cencki ◽  
Justin H. Layer ◽  
P. Anthony Weil

ABSTRACT In vivo studies have previously shown that Saccharomyces cerevisiae ribosomal protein (RP) gene expression is controlled by the transcription factor repressor activator protein 1 (Rap1p) in a TFIID-dependent fashion. Here we have tested the hypothesis that yeast TFIID serves as a coactivator for RP gene transcription by directly interacting with Rap1p. We have found that purified recombinant Rap1p specifically interacts with purified TFIID in pull-down assays, and we have mapped the domains of Rap1p and subunits of TFIID responsible. In vitro transcription of a UASRAP1 enhancer-driven reporter gene requires both Rap1p and TFIID and is independent of the Fhl1p-Ifh1p coregulator. UASRAP1 enhancer-driven transactivation in extracts depleted of both Rap1p and TFIID is efficiently rescued by addition of physiological amounts of these two purified factors but not TATA-binding protein. We conclude that Rap1p and TFIID directly interact and that this interaction contributes importantly to RP gene transcription.


2001 ◽  
Vol 5 (8) ◽  
pp. 645-651
Author(s):  
M. Peeva ◽  
M. Shopova ◽  
U. Michelsen ◽  
D. Wöhrle ◽  
G. Petrov ◽  
...  
Keyword(s):  

2005 ◽  
Vol 25 (1_suppl) ◽  
pp. S198-S198
Author(s):  
Joseph R Meno ◽  
Thien-son K Nguyen ◽  
Elise M Jensen ◽  
G Alexander West ◽  
Leonid Groysman ◽  
...  

1994 ◽  
Vol 72 (06) ◽  
pp. 942-946 ◽  
Author(s):  
Raffaele Landolfi ◽  
Erica De Candia ◽  
Bianca Rocca ◽  
Giovanni Ciabattoni ◽  
Armando Antinori ◽  
...  

SummarySeveral “in vitro” and “in vivo” studies indicate that heparin administration may affect platelet function. In this study we investigated the effects of prophylactic heparin on thromboxane (Tx)A2 biosynthesis “in vivo”, as assessed by the urinary excretion of major enzymatic metabolites 11-dehydro-TxB2 and 2,3-dinor-TxB2. Twenty-four patients who were candidates for cholecystectomy because of uncomplicated lithiasis were randomly assigned to receive placebo, unfractionated heparin, low molecular weight heparin or unfractionaed heparin plus 100 mg aspirin. Measurements of daily excretion of Tx metabolites were performed before and during the treatment. In the groups assigned to placebo and to low molecular weight heparin there was no statistically significant modification of Tx metabolite excretion while patients receiving unfractionated heparin had a significant increase of both metabolites (11-dehydro-TxB2: 3844 ± 1388 vs 2092 ±777, p <0.05; 2,3-dinor-TxB2: 2737 ± 808 vs 1535 ± 771 pg/mg creatinine, p <0.05). In patients randomized to receive low-dose aspirin plus unfractionated heparin the excretion of the two metabolites was largely suppressed thus suggesting that platelets are the primary source of enhanced thromboxane biosynthesis associated with heparin administration. These data indicate that unfractionated heparin causes platelet activation “in vivo” and suggest that the use of low molecular weight heparin may avoid this complication.


2020 ◽  
Vol 72 (5) ◽  
Author(s):  
Mario Fadin ◽  
Maria C. Nicoletti ◽  
Marzia Pellizzato ◽  
Manuela Accardi ◽  
Maria G. Baietti ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document