scholarly journals Influence of forecrop and chemical seed treatment on the occurrence of take-all (Gaeumannomyces graminis var. tritici) on winter wheat

2013 ◽  
Vol 55 (1) ◽  
pp. 359-365
Author(s):  
Zbigniew Weber

The work was done in years 1998/1999 - 2000/2001 on plantations and field plot experiments. Aim of the work was evaluation of take-all occurrence on winter wheat in milk-wax growth stage in dependence on forecrop (oilseed rape, wheat or barley) as well as seed treatment with Latitude 125 FS when wheat was planted on fields after wheat or barley. Percentage of infected plants when seeds were not treated with Latitude 125 FS varied from 82-100 on fields after wheat or barley, and 54-69 on fields after oilseed rape. In treatments with wheat grown after wheat or barley the percentage of infected plants amounted 20-100 when seeds were not treated with Latitude 125 FS and 13-86 when seeds were treated with Latitude 125 FS. Mean degree of infection was low when percentage of infected plants was low and high when percentage of infected plants was high.

1990 ◽  
Vol 115 (2) ◽  
pp. 209-219 ◽  
Author(s):  
J. McEwen ◽  
R. J. Darby ◽  
M. V. Hewitt ◽  
D. P. Yeoman

SUMMARYThe effects on a winter wheat test crop of a preliminary year of winter or spring field beans (Vicia faba), winter oats, winter oilseed rape, winter or spring peas (Pisum sativum), winter wheat, spring lupins (Lupinus albus), spring sunflowers (Helianthus annuus) or a cultivated fallow were compared in three 2-year experiments on clay-with-flints soil at Rothamsted from 1986 to 1989. In one experiment, autumn-sown ryegrass (Lolium perenne) and an uncultivated fallow, given weedkiller, were also included in the first year. Plots of test-crop wheat were divided to compare no N fertilizer with an optimal amount estimated from a predictive model.Amounts of take-all (Gaeumannomyces graminis) in the test crop of wheat following wheat were very slight in the first experiment, but large in the second and third. All the break crops reduced takeall to none or very slight amounts.Amounts of NO3-N in the soil in autumn after the first-year crops ranged from 7 to 95 kg N/ha. On average, they were least after oats, and most after cultivated fallow. In autumn 1988they were least after autumn-sown ryegrass. In early spring, amounts of NO3-N were generally less, ranging from 7 to 55 kg N/ha, depending on preceding crops, sowing date of the wheat and the weather. Amounts of NH4-N in soil were little affected by preceding crops or weather and were generally smaller in spring.The estimated average N fertilizer requirement of test-crop wheat following winter wheat was 230kg N/ha. This was increased by 10 kg N/ha following winter oats, decreased by 40 kg N/ha after spring peas and by 30 kg N/ha after winter rape, winter peas, spring beans and cultivated fallow. Other preliminary crops not represented every year had effects within this range.Grain yields of test-crop wheat given optimal N averaged 7·2 t/ha after winter wheat, c.1·5 t/ha less than the average after most of the break crops. The yield after oats was limited by self-sown ‘volunteers’ and that after ryegrass by limited soil N after ploughing.Of the break crops tested, winter and spring beans, winter oats, winter rape and spring peas all gave satisfactory yields. A farmer should choose between these on the basis of local farm circumstances and current economics of the break crops. Differences between effects on take-all and savings on fertilizer N were too small to influence this decision.


2008 ◽  
Vol 43 (No. 1) ◽  
pp. 13-18
Author(s):  
Z. Sawinska ◽  
I. Malecka

The experiments were conducted in 2001&minus;2003 at the Experimental Station in Zlotniki of the Agricultural University of Poznan (Poland). The impact of different fungicidal protection programs on occurrence and incidence of fungal diseases on leaf and ear as well as of diseases on stem base and roots of winter wheat was determined. Infections on stem base and roots were mostly caused by <i>Fusarium</i> spp. and <i>Gaeumannomyces graminis</i>. Seed treatment with Latitude 125 FS reduced significantly take-all of winter wheat in comparison with the standard treatment (Raxil 060 FS). However, the seed treatments lowered only slightly the incidence of brown foot rot. The applied complex chemical protection program of winter wheat reduced successfully the infection of leaves and ears by fungal diseases.


2010 ◽  
Vol 100 (5) ◽  
pp. 404-414 ◽  
Author(s):  
Youn-Sig Kwak ◽  
Peter A. H. M. Bakker ◽  
Debora C. M. Glandorf ◽  
Jennifer T. Rice ◽  
Timothy C. Paulitz ◽  
...  

Dark pigmented fungi of the Gaeumannomyces–Phialophora complex were isolated from the roots of wheat grown in fields in eastern Washington State. These fungi were identified as Phialophora spp. on the basis of morphological and genetic characteristics. The isolates produced lobed hyphopodia on wheat coleoptiles, phialides, and hyaline phialospores. Sequence comparison of internal transcribed spacer regions indicated that the Phialophora isolates were clearly separated from other Gaeumannomyces spp. Primers AV1 and AV3 amplified 1.3-kb portions of an avenacinase-like gene in the Phialophora isolates. Phylogenetic trees of the avenacinase-like gene in the Phialophora spp. also clearly separated them from other Gaeumannomyces spp. The Phialophora isolates were moderately virulent on wheat and barley and produced confined black lesions on the roots of wild oat and two oat cultivars. Among isolates tested for their sensitivity to 2,4-diacetylphloroglucinol (2,4-DAPG), the 90% effective dose values were 11.9 to 48.2 μg ml–1. A representative Phialophora isolate reduced the severity of take-all on wheat caused by two different isolates of Gaeumannomyces graminis var. tritici. To our knowledge, this study provides the first report of an avenacinase-like gene in Phialophora spp. and demonstrated that the fungus is significantly less sensitive to 2,4-DAPG than G. graminis var. tritici.


Sign in / Sign up

Export Citation Format

Share Document