THE GROUNDWATERS IN SUSITA MEADOW - ALTERNATIVE WATER RESOURCES FOR THE WATER SUPPLY OF POLATA LOCALITY, GORJ COUNTY � ROMANIA

Author(s):  
Cristina Prunisoara
2018 ◽  
Vol 45 ◽  
pp. 00090 ◽  
Author(s):  
Agnieszka Stec

This paper reports results from a survey of households in Poland concerning the use of alternative sources of water. Research showed that respondents were not too inclined to replace water from the water supply with greywater and rainwater. They would be afraid of using both greywater (79%) and rainwater (60%) in their household. The biggest concern was the use of alternative sources of water for doing laundry - more than 50% of respondents identified this issue in both cases. Only 43% of respondents would like to install a greywater recycling system and much more -78% a rainwater harvesting system. For the vast majority of respondents (80%) a subsidy would be an incentive for using these systems in their household.


2017 ◽  
Vol 18 (2) ◽  
pp. 612-621 ◽  
Author(s):  
Jae-ho Choi ◽  
Miroslaw Skibniewski ◽  
Young-Gyoo Shim

Abstract This paper demonstrates a comprehensive methodology for assessing the comparison of unit water production cost (UWPC) between alternative water resources including desalination, freshwater reservoirs, single-purpose dams, underground dams and two indirect water in take technologies – riverbank filtration and aquifer storage and recovery (ASR). This study considers the Monte Carlo simulation as the only viable solution to tackle this critical question, which can be used to evaluate the economics of diverse water supply schemes incorporating those alternatives and prepare long-term water supply planning. Built upon actual and conceptual cost data for each alternative, total project cost and operation and management cost estimation models for each alternative were developed and used for generating mean UWPC information using the Monte Carlo simulation approach. The mean UWPC differences between alternative water supply schemes were found to be statistically significant and the simulation results revealed that ASR is the lowest-cost option to provide drinkable water for both cases when a conventional water treatment plant (WTP) and advanced WTP were used as a connected post-treatment process.


2015 ◽  
Vol 30 (2) ◽  
pp. 193-198 ◽  
Author(s):  
Takashi Matsumura ◽  
Shizuka Osaki ◽  
Daisuke Kudo ◽  
Hajime Furukawa ◽  
Atsuhiro Nakagawa ◽  
...  

AbstractIntroductionThe aim of this study was to shed light on damage to water supply facilities and the state of water resource operation at disaster base hospitals in Miyagi Prefecture (Japan) in the wake of the Great East Japan Earthquake (2011), in order to identify issues concerning the operational continuity of hospitals in the event of a disaster.MethodsIn addition to interview and written questionnaire surveys to 14 disaster base hospitals in Miyagi Prefecture, a number of key elements relating to the damage done to water supply facilities and the operation of water resources were identified from the chronological record of events following the Great East Japan Earthquake.ResultsNine of the 14 hospitals experienced cuts to their water supplies, with a median value of three days (range = one to 20 days) for service recovery time. The hospitals that could utilize well water during the time that water supply was interrupted were able to obtain water in quantities similar to their normal volumes. Hospitals that could not use well water during the period of interruption, and hospitals whose water supply facilities were damaged, experienced significant disruption to dialysis, sterilization equipment, meal services, sanitation, and outpatient care services, though the extent of disruption varied considerably among hospitals. None of the hospitals had determined the amount of water used for different purposes during normal service or formulated a plan for allocation of limited water in the event of a disaster.ConclusionThe present survey showed that it is possible to minimize the disruption and reduction of hospital functions in the event of a disaster by proper maintenance of water supply facilities and by ensuring alternative water resources, such as well water. It is also clear that it is desirable to conclude water supply agreements and formulate strategic water allocation plans in preparation for the eventuality of a long-term interruption to water services.MatsumuraT, OsakiS, KudoD, FurukawaH, NakagawaA, AbeY, YamanouchiS, EgawaS, TominagaT, KushimotoS. Water supply facility damage and water resource operation at disaster base hospitals in Miyagi Prefecture in the wake of the Great East Japan Earthquake. Prehosp Disaster Med. 2015;30(2):1-5.


Author(s):  
Seth Sheldon ◽  
Ory Zik

Using the connection between water and energy as a case study, we present a model that uses the effects of geospatial and temporal context on embedded energy to approximate resource sustainability for water. First, the basic steps of calculating the energy intensity for a given location are discussed. Intensity is presented in units of energy per volume of water. In the case of supplying fresh water, energy intensity depends upon the quality of the original resource, its location relative to the end use location, and the type of technology in use to move and treat the water. Pumping, and conveyance, purification, distribution, wastewater treatment, and system inefficiencies (e.g. evaporative losses, leaks) increase the total energy investment, while water recycling decreases the total investment. Lift and purification are typically the greatest contributors to the overall energy intensity of a fresh water supply, but system inefficiencies can have a substantial impact as well. Over time, growing cities tend to progress from using their least energy intensive water resources (e.g. untreated surface water) to their most energy intensive (e.g. long distance transfers, desalinated water lifted to high elevations) as water demands begin to outstrip supplies. As a function of water availability, we assign each location an intensity value that approaches the intensity of its next “best” (i.e., least energy intensive) source of water. Hence, an area which is depleting its available surface and groundwater may have desalinated surface or groundwater as its next (and last) resort. The area would be characterized as undergoing water stress, and relatively less sustainable than areas which use their local fresh water supplies with no perceivable negative impact. An operating principle of this research is that with enough energy, it is possible to supply any location with fresh water. Desalinated ocean water, moved over long distances and lifted to great heights represents that upper limit. Working backwards from this extreme scenario, it is possible to not only move away from the paradigm of unitless or vague sustainability indices, but to quantify resource scarcity in a way that is both intuitive and actionable. The model is also self-correcting: areas may reduce the energy intensity of a sustainable water supply through better management of existing fresh water resources or through technological innovations that produce fresh water from degraded sources in an energy efficient manner. A major conclusion of this research is that the amount of energy necessary to maintain a reliable supply of fresh water greatly varies by location and technology choice. Further, many areas of the country overuse their local fresh water sources. To create a durable water supply, such areas can 1) reduce their use of local fresh water to sustainable levels and invest in alternative water sources—at a high financial and energy cost, or 2) aggressively pursue water efficiency measures so that they can both reduce their reliance on local fresh water sources and avoid the high costs associated with alternative water supplies. Additionally, by converting water use to energy consumption as a function of scarcity, it is possible to weigh the relative importance of water use efficiency to conservation in other areas (e.g. electricity, direct heating, waste disposal).


Author(s):  
Ramiz Tagirov ◽  
◽  
Maya Zeynalova ◽  

The article examines the problem of fresh water, since in terms of water supply from its own resources per capita and per 1 km2, the republic is 8 times behind Georgia, 2 times behind Armenia. Significant water consumption in Azerbaijan is caused by its arid territory with a predominance of active temperature and a lack of precipitation, which leads to intensive irrigation of crops. At the same time, artificial irrigation is used on 70% of the cultivated land.


2018 ◽  
Vol 11 (1) ◽  
pp. 130-149 ◽  
Author(s):  
Osman Jussah ◽  
Mohamed O. M. Orabi ◽  
Janez Sušnik ◽  
Françoise Bichai ◽  
Chris Zevenbergen

Abstract Growing water demand poses a challenge for supply. Poor understanding of alternative sources can hamper plans for addressing water scarcity and supply resilience. The potential of three alternative supply systems in Lilongwe, Malawi and Sharm El-Sheikh, Egypt are compared using a fast, data-light assessment approach. Lilongwe water supply is based on unsustainable use of source water, while Sharm depends primarily on desalination. Both locations experience shortages due to poor system performance and service inequity. Alternative supply systems are shown to potentially contribute to supply augmentation/diversification, improving service and system resilience. There are considerable seasonal variations to consider, especially regarding storage of water. Social preferences could limit the uptake/demand for alternative water. One important conclusion is the value in addressing public perceptions of alternative systems, and assessing water end use in order to site systems appropriately. Other issues surround financing, encouraging uptake and addressing institutional/governance aspects surrounding equitable distribution. A further consideration is whether demand reductions might yield shorter-term improvements in performance without the need to institute potentially expensive alternative water strategies. Reducing non-revenue water is a priority. Such measures should be undertaken with alternative supply enhancement to reduce inequity of supply, improve system performance and increase resilience to future changes.


Author(s):  
Sejabaledi Agnes Rankoana

Purpose The study explored the impacts of climate change on water resources, and the community-based adaptation practices adopted to ensure water security in a rural community in Limpopo Province, South Africa. Design/methodology/approach The study was conducted in Limpopo Province, South Africa. The participatory approach was used to allow community members to share their challenges of water scarcity, and the measures they have developed to cope with inconsistent water supply. Findings The study results show that the community obtains water for household consumption from the reticulation system supplied by Mutale River and the community borehole. These resources are negatively impacted by drought, change in the frequency and distribution of rainfall, and increased temperature patterns. The water levels in the river and borehole have declined, resulting in unsustainable water supply. The community-based adaptation practices facilitated by the water committee include observance of restrictions and regulations on the water resources use. Others involve securing water from neighbouring resources. Originality/value This type of community-based action in response to climate change could be used as part of rural water management strategies under climate change.


Author(s):  
Violeta Cabello ◽  
David Romero ◽  
Ana Musicki ◽  
Ângela Guimarães Pereira ◽  
Baltasar Peñate

AbstractThe literature on the water–energy–food nexus has repeatedly signaled the need for transdisciplinary approaches capable of weaving the plurality of knowledge bodies involved in the governance of different resources. To fill this gap, Quantitative Story-Telling (QST) has been proposed as a science for adaptive governance approach that aims at fostering pluralistic and reflexive research processes to overcome narrow framings of water, energy, and food policies as independent domains. Yet, there are few practical applications of QST and most run on a pan-European scale. In this paper, we apply the theory of QST through a practical case study regarding non-conventional water sources as an innovation for water and agricultural governance in the Canary Islands. We present the methods mixed to mobilize different types of knowledge and analyze interconnections between water, energy, and food supply. First, we map and interview relevant knowledge holders to elicit narratives about the current and future roles of alternative water resources in the arid Canarian context. Second, we run a quantitative diagnosis of nexus interconnections related to the use of these resources for irrigation. This analysis provides feedback to the narratives in terms of constraints and uncertainties that might hamper the expectations posed on this innovation. Thirdly, the mixed analysis is used as fuel for discussion in participatory narrative assessment workshops. Our experimental QST process succeeded in co-creating new knowledge regarding the water–energy–food nexus while addressing some relational and epistemological uncertainties in the development of alternative water resources. Yet, the extent to which mainstream socio-technical imaginaries surrounding this innovation were transformed was rather limited. We conclude that the potential of QST within sustainability place-based research resides on its capacity to: (a) bridge different sources of knowledge, including local knowledge; (b) combine both qualitative and quantitative information regarding the sustainable use of local resources, and (c) co-create narratives on desirable and viable socio-technical pathways. Open questions remain as to how to effectively mobilize radically diverse knowledge systems in complex analytical exercises where everyone feels safe to participate.


Sign in / Sign up

Export Citation Format

Share Document