COMPARATIVE CALCULATION OF GLOBAL AND HEATING COSTS FOR NEARLY ZERO ENERGY SINGLE-FAMILY BUILDING

Author(s):  
Stanislavs Gendelis
Buildings ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 214 ◽  
Author(s):  
Piasecki

The article presents a practical implementation of the indoor quality model. The indoor environmental quality (IEQ) model, including its essential elements (TCindex—thermal comfort, IAQindex—indoor air quality, ACcindex—acoustic comfort and Lindex—daylight quality), is used to evaluate a case-study single-family building built with the nearly zero energy (NZEB) standard. The results of comfort sub-indices based on the measured indoor parameters are aggregated into one IEQindex value representing the predicted building occupants’ satisfaction in percentage terms. The author’s intention is to use the proposed model in broader civil and environmental engineering practice, especially in terms of supporting the energy performance certification. The results obtained using the IEQ model were also compared with the results obtained with a similar method based on the comprehensive assessment system for built environment efficiency (CASBEE) approach for the same building.


2021 ◽  
Vol 246 ◽  
pp. 05004
Author(s):  
Triinu Bergmann ◽  
Aime Ruus ◽  
Kristo Kalbe ◽  
Mihkel Kiviste ◽  
Jiri Tintera

The Energy Performance of Buildings Directive (EPBD) of the EU states that Each Member State shall establish a long-term renovation strategy to support the renovation of building stock into a highly energy efficient and decarbonised building stock by 2050. The motive for the study was the dissatisfaction of inhabitants of a single-family building about the heating costs and thermal discomfort. In this study both the emotional and resource efficiency aspects were considered. The structures and technical systems of the studied small dwelling are typical of representing single-family buildings of the Estonian building stock. The initial purpose was to improve the energy efficiency of a building while preserving the existing load bearing structures as much as possible. The research questions were: 1) what the situation before the renovation was, 2) what solutions can be used, 3) making decisions, whether to renovate or demolish. Calculations were carried out – the thermal transmittance of the envelope structures was calculated based on the construction information, and the linear thermal transmittance of geometrical thermal bridges was calculated by using the software Therm. Field tests performed - the thermography and the air leakage of the building was found by standard blower-door test. Specific air leakage rate qE50=11.1 m3/(hm2) was estimated. A renovation solution was offered considering the need for extra insulation and airtightness. The dwelling energy performance indicator was reduced from the existing 279 kWh/(m2y) to 136 kWh/(m2y). For significant energy efficiency improvement deep renovation measures must be used and the question was whether it is rational. Before making the final decision, several aspects have to be considered: 1) emotional – the demolition or renovation of somebody’s home, 2) environmental aspects and resource-efficiency – the possibilities of the reuse of materials.


2020 ◽  
pp. 1420326X2096115
Author(s):  
Jaime Resende ◽  
Marta Monzón-Chavarrías ◽  
Helena Corvacho

Buildings account for 34% of world energy consumption and about half of electricity consumption. The nearly/Net Zero Energy Building (nZEB/NZEB) concepts are regarded as solutions for minimizing this problem. The countries of Southern Europe, which included the nZEB concept recently in their regulatory requirements, have both heating and cooling needs, which adds complexity to the problem. Brazil may benefit from their experience since most of the Brazilian climate zones present significant similarities to the Southern European climate. Brazil recently presented a household energy consumption increase, and a growing trend in the use of air conditioning is predicted for the coming decades. Simulations with various wall and roof solutions following the Brazilian Performance Standard were carried out in a low standard single-family house in three different climate zones in order to evaluate thermal comfort conditions and energy needs. Results show that in milder climate zones, achieving thermal comfort with a low energy consumption is possible, and there is a great potential to achieve a net zero-energy balance. In the extreme hot climate zone, a high cooling energy consumption is needed to provide thermal comfort, and the implementation of a nearly zero-energy balance may be more feasible.


Buildings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 364
Author(s):  
Johannes Koke ◽  
André Schippmann ◽  
Jingchun Shen ◽  
Xingxing Zhang ◽  
Peter Kaufmann ◽  
...  

Container-based lightweight buildings offer a high ecologic and economic potential when they are designed as nearly zero-energy container buildings (NZECBs). Thus, they are relevant to energy transition in achieving an almost climate-neutral building stock. This paper describes and applies design strategies for suitable building concepts and energy systems to be used in NZECBs for different climates. Therefore, different applications in representative climatic zones were selected. Initially, the global climate zones were characterized and analyzed with regard to their potential for self-sufficiency and renewable energies in buildings. The design strategies were further developed and demonstrated for three cases: a single-family house in Sweden, a multi-family house in Germany, and a small school building in rural Ethiopia. For each case, design guidelines were derived and building concepts were developed. On the basis of these input data, various energy concepts were developed in which solar and wind energy, as well as biomass, were integrated as renewable energy sources. All the concepts were simulated and analyzed with the Polysun® software. The various approaches were compared and evaluated, particularly with regard to energy self-sufficiency. Self-sufficiency rates up to 80% were achieved. Finally, the influence of different climate zones on the energy efficiency of the single-family house was studied as well as the influence of the size of battery storage and insulation.


Sign in / Sign up

Export Citation Format

Share Document