IMPACT OF CLIMATE CHANGE ON AGRICULTURAL DEVELOPMENT - CHALLENGES TO BULGARIAN FARMERS

Author(s):  
Teodorina Turlakova
2021 ◽  
Vol 13 (3) ◽  
pp. 1578
Author(s):  
Noha H. Moghazy ◽  
Jagath J. Kaluarachchi

The Siwa region located in the Western Desert of Egypt has 30,000 acres available for reclamation as a part of a national project to increase agricultural production. This study addressed the climate change-driven long-term concerns of developing an agricultural project in this region where groundwater from the non-renewable Nubian Sandstone Aquifer System (NSAS) is the only source of water. Different climate models were used under two representative concentration pathways (RCPs); RCP 4.5 and RCP 8.5. Projected seasonal temperatures show that the maximum increase in summer is 1.68 ± 1.64 °C in 2060 and 4.65 ± 1.82 °C in 2100 under RCP 4.5 and RCP 8.5, respectively. The increase in water requirement for crops is estimated around 6–8.1% under RCP 4.5 while around 9.7–18.2% under RCP 8.5. Maximum reductions of strategic crop yields vary from 2.9% to 12.8% in 2060 under RCP 4.5, while from 10.4% to 27.4% in 2100 under RCP 8.5. Project goals are feasible until 2100 under RCP 4.5 but only until 2080 with RCP 8.5. When an optimization analysis was conducted, these goals are possible from 2080 to 2100 by modified land allocation. The proposed methodology is useful to project impact of climate change anywhere such that management and adaptation options can be proposed for sustainable agricultural development.


Mousaion ◽  
2016 ◽  
Vol 33 (3) ◽  
pp. 1-24
Author(s):  
Emmanuel Elia ◽  
Stephen Mutula ◽  
Christine Stilwell

This study was part of broader PhD research which investigated how access to, and use of, information enhances adaptation to climate change and variability in the agricultural sector in semi-arid Central Tanzania. The research was carried out in two villages using Rogers’ Diffusion of Innovations theory and model to assess the dissemination of this information and its use by farmers in their adaptation of their farming practices to climate change and variability. This predominantly qualitative study employed a post-positivist paradigm. Some elements of a quantitative approach were also deployed in the data collection and analysis. The principal data collection methods were interviews and focus group discussions. The study population comprised farmers, agricultural extension officers and the Climate Change Adaptation in Africa project manager. Qualitative data were subjected to content analysis whereas quantitative data were analysed to generate mostly descriptive statistics using SPSS.  Key findings of the study show that farmers perceive a problem in the dissemination and use of climate information for agricultural development. They found access to agricultural inputs to be expensive, unreliable and untimely. To mitigate the adverse effects of climate change and variability on farming effectively, the study recommends the repackaging of current and accurate information on climate change and variability, farmer education and training, and collaboration between researchers, meteorology experts, and extension officers and farmers. Moreover, a clear policy framework for disseminating information related to climate change and variability is required.


2018 ◽  
Author(s):  
P A Lambat, A P Lambat V S Dongre and K J Cherian P A Lambat, A P Lambat V S Dongre and K J Cherian ◽  

Author(s):  
N. Maidanovych ◽  

The purpose of this work is to review and analyze the main results of modern research on the impact of climate change on the agro-sphere of Ukraine. Results. Analysis of research has shown that the effects of climate change on the agro-sphere are already being felt today and will continue in the future. The observed climate changes in recent decades have already significantly affected the shift in the northern direction of all agro-climatic zones of Europe, including Ukraine. From the point of view of productivity of the agro-sphere of Ukraine, climate change will have both positive and negative consequences. The positives include: improving the conditions of formation and reducing the harvesting time of crop yields; the possibility of effective introduction of late varieties (hybrids), which require more thermal resources; improving the conditions for overwintering crops; increase the efficiency of fertilizer application. Model estimates of the impact of climate change on wheat yields in Ukraine mainly indicate the positive effects of global warming on yields in the medium term, but with an increase in the average annual temperature by 2 ° C above normal, grain yields are expected to decrease. The negative consequences of the impact of climate change on the agrosphere include: increased drought during the growing season; acceleration of humus decomposition in soils; deterioration of soil moisture in the southern regions; deterioration of grain quality and failure to ensure full vernalization of grain; increase in the number of pests, the spread of pathogens of plants and weeds due to favorable conditions for their overwintering; increase in wind and water erosion of the soil caused by an increase in droughts and extreme rainfall; increasing risks of freezing of winter crops due to lack of stable snow cover. Conclusions. Resource-saving agricultural technologies are of particular importance in the context of climate change. They include technologies such as no-till, strip-till, ridge-till, which make it possible to partially store and accumulate mulch on the soil surface, reduce the speed of the surface layer of air and contribute to better preservation of moisture accumulated during the autumn-winter period. And in determining the most effective ways and mechanisms to reduce weather risks for Ukrainian farmers, it is necessary to take into account the world practice of climate-smart technologies.


Sign in / Sign up

Export Citation Format

Share Document