scholarly journals Actinidia chinensis Planch. root extract inhibits the proliferation, migration and invasion of breast cancer cells via the AKT/GSK-3β signaling pathway

Author(s):  
Chunchun Gan ◽  
Zhan Jin ◽  
Xiaopeng Wei ◽  
Meina Jin
2021 ◽  
Author(s):  
Maonan Wang ◽  
Manli Dai ◽  
Dan Wang ◽  
Ting Tang ◽  
Fang Xiong ◽  
...  

Abstract BackgroundLong noncoding RNAs (lncRNAs) play an important role in the regulation of gene expression and are involved in several pathological responses. However, many important lncRNAs in breast cancer have not been identified and their expression levels and functions in breast cancer remain unknown.MethodsWe used the microarray data to identify differentially expressed lncRNAs between breast cancer and adjacent breast epithelial tissues. In vitro and in vivo assays were used to explore the biological effects of the differentially expressed lncRNA Apoptosis-Associated Transcript in Bladder Cancer (AATBC) in breast cancer cells. The mass spectrometry and RNA pulldown were used to screen AATBC interacting proteins. Using the Kaplan-Meier method, survival analysis was performed.ResultsThe expression of AATBC was significantly high in breast cancer samples, and this high AATBC level was tightly correlated with poor prognosis in breast cancer patients. In vitro and in vivo experiments indicated that AATBC promoted breast cancer cells migration and invasion. AATBC specifically interacted with Y-box binding protein 1 (YBX1), which activated the YAP1/Hippo signaling pathway by binding to macrophage stimulating 1 (MST1) and promoting the nuclear translocation of Yes associated protein 1 (YAP1), allowing its function as a nuclear transcriptional regulator. ConclusionsAATBC is highly expressed in breast cancer and contributes to patients’ progression, indicating that it could serve as a novel prognostic marker for the disease. Mechanistically, AATBC affects migration and invasion of breast cancer cells through an AATBC-YBX1-MST1 axis, resulting in activating the YAP1/Hippo signaling pathway. This is also an important supplement to the composition of the YAP1/Hippo signaling pathway. The model of “AATBC-YAP1” may bring a new dawn to the treatment of breast cancer.


2020 ◽  
Vol 11 ◽  
Author(s):  
Fangyi Long ◽  
Hong Lin ◽  
Xiqian Zhang ◽  
Jianhui Zhang ◽  
Hongtao Xiao ◽  
...  

Background: Toll-like receptor 4 (TLR4) is an essential sensor related to tumorigenesis, and overexpression of TLR4 in human tumors often correlates with poor prognosis. Atractylenolide‐I (AT-I), a novel TLR4-antagonizing agent, is a major bioactive component from Rhizoma Atractylodes Macrocephalae. Emerging evidence suggests that AT-I exerts anti-tumor effects on various cancers such as colorectal cancer, bladder cancer and melanoma. Nevertheless, the effects of AT-I on mammary tumorigenesis remain unclear.Methods: In order to ascertain the correlation of TLR4/NF-κB pathway with breast cancer, the expression of TLR4 and NF-κB in normal breast tissues and cancer tissues with different TNM-stages was detected by human tissue microarray and immunohistochemistry technology. The effects of AT-I on tumorigenesis were investigated by cell viability, colony formation, apoptosis, migration and invasion assays in two breast cancer cells (MCF-7 and MDA-MB-231), and N-Nitroso-N-methylurea induced rat breast cancer models were developed to evaluate the anti-tumor effects of AT-I in vivo. The possible underlying mechanisms were further explored by western blot and ELISA assays after a series of LPS treatment and TLR4 knockdown experiments.Results: We found that TLR4 and NF-κB were significantly up-regulated in breast cancer tissues, and was correlated with advanced TNM-stages. AT-I could inhibit TLR4 mediated NF-κB signaling pathway and decrease NF-κB-regulated cytokines in breast cancer cells, thus inhibiting cell proliferation, migration and invasion, and inducing apoptosis of breast cancer cells. Furthermore, AT-I could inhibit N-Nitroso-N-methylurea-induced rat mammary tumor progression through TLR4/NF-κB pathway.Conclusion: Our findings demonstrated that TLR4 and NF-κB were over expressed in breast cancer, and AT-I could suppress tumorigenesis of breast cancer via inhibiting TLR4-mediated NF-κB signaling pathway.


PLoS ONE ◽  
2016 ◽  
Vol 11 (4) ◽  
pp. e0153194 ◽  
Author(s):  
Xiaohui Zhang ◽  
Shanliang Zhong ◽  
Yong Xu ◽  
Dandan Yu ◽  
Tengfei Ma ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document