Microstructural study of plasma sprayed hydroxyapatite coatings

Author(s):  
S. Kowalski ◽  
R. Belka ◽  
W. Żórawski ◽  
M. Sztorc ◽  
A. Góral ◽  
...  

Purpose: The aim of this study is to present microstructure and mechanical properties of hydroxyapatite coatings sprayed by means novel plasma system with axially injection of powder. Design/methodology/approach: Coatings were deposited with Axial III plasma spraying system and examined by SEM, XRD and by a nanoindentation technique (Nanovea) with a Berkovitz indenter. Surface of coatings was analysed by means of a Talysurf CCI-Lite non-contact 3D profiler. Findings: This study shows the microstructure and mechanical properties of hydroxyapatite coatings (HA) obtained by plasma spraying from the powder with a cauliflower-like high porous structure consisting of nanograins with dimension below 100 nm. The cross-section of plasma sprayed HA coating reveals lamellar structure containing pores in the interior of the lamellae. Moreover, between lamellae, some microcracks were detected. Hardness and elastic modulus measured by nanoindentation were found to be around 0.085 and 6.82 GPa respectively, what was comparable with HA coatings sprayed by a modified cold spray system. Both XRD patterns are practically identical, so no new phases were created in hydroxyapatite coating in comparison with feedstock powder during the spray process. High values of a geometry of HA coating; maximum peak height, maximum pit height and maximum height confirmed significant roughening of a surface, which is a result of the interaction of melted powder grains with the surfaces during the plasma spraying. Research limitations/implications: Obtained properties of coatings will be the base for comparison with suspension plasma sprayed coatings. Practical implications: Hydroxyapatite coatings deposited by means novel plasma system are designated for spraying implants. Originality/value: Properties of hydroxyapatite coatings plasma sprayed with novel axially injection of powder.

2007 ◽  
Vol 14 (03) ◽  
pp. 371-376 ◽  
Author(s):  
JIN-LING SUI ◽  
WU BO ◽  
ZHOU HAI ◽  
NING CAO ◽  
MU-SEN LI

Plasma-spraying parameters are of crucial importance to the fabrication of high-quality hydroxyapatite (HA) coating for biomedical use. In this paper, hydroxyapaptite was coated onto carbon fiber reinforced carbon composites ( C/C composites) by a plasma spraying method. The effect of stand-off distances on the microstructure, phase composition and shear strength of hydroxyapatite coatings was studied. X-ray diffraction (XRD) was used to characterize the phase composition and scanning electron microscopy (SEM) examined the morphology of the sprayed surface and polished cross-sections. The shear strength of the HA coatings– C/C substrates was detected on a RGD-5 electric tension machine. The interface of the HA coating– C/C composites was also detected. Results showed that the extent of melting of particles increased with increasing stand-off distances, while the crystallinity of the HA decreased at a power level of 30 kW. Mechanical bonding plays a dominant role at the interface of the rough substrate and the deformed HA particles.


2020 ◽  
Vol 59 (1) ◽  
pp. 340-351
Author(s):  
Lin Yinghua ◽  
Ping Xuelong ◽  
Kuang Jiacai ◽  
Deng Yingjun

AbstractNi-based alloy coatings prepared by laser cladding has high bonding strength, excellent wear resistance and corrosion resistance. The mechanical properties of coatings can be further improved by changing the composition of alloy powders. This paper reviewed the improved microstructure and mechanical properties of Ni-based composite coatings by hard particles, single element and rare earth elements. The problems that need to be solved for the particle-reinforced nickel-based alloy coatings are pointed out. The prospects of the research are also discussed.


2014 ◽  
Vol 40 (8) ◽  
pp. 12861-12867 ◽  
Author(s):  
G. Di Girolamo ◽  
A. Brentari ◽  
C. Blasi ◽  
E. Serra

Sign in / Sign up

Export Citation Format

Share Document