scholarly journals Analysis of the load-carrying capacity of a steel frame under fire conditions

2018 ◽  
Vol 187 (1) ◽  
pp. 129-139
Author(s):  
Piotr Bilko ◽  
Szymon Sawczynski

This article aims at presenting the basic principles of designing steel structures according to Eurocode PN-EN 1993-1-2, i.e. with respect to ensuring the appropriate level of safety for such structures in case of a fire developing into flashover. The load-carrying capacity of a steel structure, serving as an example, was assessed on the basis of a static strain-stress analysis. The analysis was conducted regarding changes in the temperature of structural members, both the exposed and the fireproof protected ones, under fire conditions.

Author(s):  
Ryoga Oura ◽  
Takashi Yamaguchi ◽  
Kentaro Arimura

<p>Bridges are composed by many structural members which interact with each other to resist against various load combinations. Considering damage repair of one of its structural members, the relationship between the recovery of the individual load-carrying capacity due to the repair of a single member and the improvement of the load-carrying capacity of the structural system is not clear. In the present study, a full-scale FE analysis has been conducted for a steel I-girder bridge system with corrosion damages which have been repaired. The analysis considered, the structural system behavior, varying the repaired areas and the type of patch members. From the analytical results, it was found that, compared to the method in which the damaged portion is completely repaired, the amount of repair can be reduced by taking into account the structural system behavior and partially repair both the damaged and the adjacent intact girders.</p>


2019 ◽  
Vol 9 (17) ◽  
pp. 3637
Author(s):  
Haitao Chen ◽  
Lai Wang ◽  
Jitao Zhong

The optimal strut-and-tie models (STMs) of two typical irregular concrete deep beams were constructed using evolutionary structural optimization and compared with those of previous studies. The reinforced concrete deep beam specimens were cast according to the reinforcement designs guided by different STMs. Eight irregular concrete deep beam specimens were experimentally investigated under stepped loading, and the differences in the amount of steel used, the load-carrying capacity, and the failure pattern of the different specimens were analyzed. The results show that the optimal STMs proposed in this study have significant advantages in terms of cost-effectiveness and can simultaneously ensure the load-carrying capacity, delay the crack propagation of irregular concrete deep beams, and reduce the amount of steel used in structural members. Therefore, they have an important engineering application value for the reinforcement design of irregular concrete deep beams.


2010 ◽  
Vol 102-104 ◽  
pp. 140-144
Author(s):  
Yi Ping Wang ◽  
Yong Zang ◽  
Di Ping Wu

The buckling behavior of thin-walled steel structures under load is still imperfectly understood, in spite of much research over the past 50 years. In this paper, the buckling behaviors of H-section columns under compression have been simulated with ANSYS. In the analysis, contact pairs between column ends and end blocks have been introduced into the model, and the load carrying capacity of the columns with four kinds of end constraint conditions and various typical initial geometric imperfections has been calculated and discussed. The results indicate that the load carrying capacity is most sensitive to the flexural imperfection, and the constraint condition cannot change the imperfection sensitivity of a column under compression, but improving restrain condition can heighten the load carrying capacity. They are helpful to the use and the tolerance control in the manufacture process of thin-walled H-section steel structures.


2002 ◽  
Vol 5 (2) ◽  
pp. 75-85 ◽  
Author(s):  
G. N. Ronghe ◽  
L. M. Gupta

The concept of prestressing steel structures has only recently been widely considered, despite a long and successful history of prestressing concrete members. Several analytical studies of prestressed steel plate girder were reported in the literature, but much of that work was not studied with reference to different parameters like tendon profile, eccentricity, partial span to full span ratio, prestressing force, load carrying capacity etc. associated with prestressing. This paper examines analytically a comparative study of various tendon configurations and prestressing parameters on over all analysis and design of prestressed steel plate girder. The output from the computer Program for analysis and design of steel plate girder prestressed with different tendon configurations are compared among each other. As a Case-study, a prototype model of Prestressed Steel Testing Frame with straight tendon has been designed, constructed and tested in the laboratory for its safe load carrying capacity and maximum deflection.


2013 ◽  
Vol 12 (2) ◽  
pp. 071-078
Author(s):  
Adam Wysokowski

In recent years, in our country are modernized and rebuilt several sections of railway lines, mainly main lines. The greater part is adapted to increased speeds. However, such an adaptation involve the reconstruction or construction of new bridges including steel ones. The paper concerns the executive imperfections of constructions of steel bridges which in recent years have been built in the modernized main railway lines. These imperfections consist of, among others, the geometric imperfections from the assumed construction project. This also applies to defects in welds of various types that occur in critical elements of bridge structure. The aim of this paper is to demonstrate the influence of imperfections on the load carrying capacity and fatigue of these structures. Author showed that the observed imperfections have a significant impact on the fatigue life - especially for weld defects, in the case of load carrying capacity their importance is much smaller. These analyses are performed by using the theoretical methods developed in previous reports. In the analysis new standards for the design of steel structures from Eurocodes group were used.


Author(s):  
Vishnu Vardan.A ◽  
Kaarthik. M

There are two structural members used in steel construction the hot rolled members and the cold formed members. They are light members compared to the traditional heavier hot rolled steel structural members used in the field. They have high strength to weight ratio resulting in less dead weight making it a good option in construction of bridges roof trusses transmission line towers multi storied buildings and other structural members. This paper is done to understand the flexural capacity and to enhance it by developing innovative latticed cold formed steel beam. The impact of web opening of the cold formed beam on the flexural behavior of cold formed built-up I section under two point loading is investigated for the simply supported end conditions. Numerical analysis is performed using finite element analysis (FEM) software. From results, the load vs. Deflection curve, failure modes and ultimate load carrying capacity of the specimen presented in this paper. Therefore the main focus of this project is to investigate the flexural behavior of these steel members and by replacing the lattice hot rolled section by cold formed steel sections. The ultimate load carrying capacity with failure mode of simulated FEA models was compared with experimental results.


2017 ◽  
Vol 11 (1) ◽  
pp. 906-918
Author(s):  
Yao Xingyou

Introduction: Based on the experimental results of cold-formed thin-walled steel lipped channel sections, the uncertainty of calculating mode of load-carrying capacity using effective width method considering distortional buckling for different material types cold-formed steel compressed members was researched, and the uncertainties of material strength and geometric characteristics of the typical sections were statistically analyzed. Methods: According to the recommended resistance of partial coefficient in the draft of Technical code of cold-formed steel structures (GB50018-), the reliability indexes of cold-formed thin-walled steel lipped channel sections under compression were investigated using the improved first-order second-moment method considering different possible external loading combinations. Results: The analyzed results show that, using the recommended resistance partial coefficient in the code draft, the reliability indexes of the compressed members with width-thickness ratio within the limitation of code draft can well met the target reliability index. The suitability of the corresponding calculating modes of load-carrying capacity considering distortional buckling was established.


2020 ◽  
Vol 8 (6) ◽  
pp. 2879-2885

Structural steel has many advantages over other construction materials by its high strength and ductility. It has a higher strength to cost ratio in tension and a slightly lower strength to cost ratio in compression when compared with concrete. This paper is intended to evaluate the beam column rolled and cold formed steel connection experimentally by moment resistant connection such as stiffened, un stiffened and splices connection. At the present, in most of the countries, the use of light gauge cold formed steel section has been developed for economical and best seismic performance by different shape of cross sectional area and various types of connections are used. These results to study the seismic performance of cold form steel sections area using various moment resistance connections. Finally the report result the splice connection has best moment resistance connection, seismic resistant of structures, load carrying capacity is high and minimum weight compare with other types of connections. The splice connection has load carrying capacity is high, so we can reduced the size of section and prevent the base shear due to reduced the weight of structures.


Author(s):  
E. J. Nestorides

The paper sets out the basic principles and describes the main features of test rigs which are used for determining static and dynamic stresses and displacements, fatigue strength, and load-carrying capacity of various engine components subjected to mechanical and thermal loads. It also discusses the relative merits of test rigs and gives details of the instrumentation required with some rigs in order to indicate the results.


Sign in / Sign up

Export Citation Format

Share Document